These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1652042)

  • 1. Tissue engineering by cell transplantation using degradable polymer substrates.
    Cima LG; Vacanti JP; Vacanti C; Ingber D; Mooney D; Langer R
    J Biomech Eng; 1991 May; 113(2):143-51. PubMed ID: 1652042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers.
    Kim WS; Vacanti JP; Cima L; Mooney D; Upton J; Puelacher WC; Vacanti CA
    Plast Reconstr Surg; 1994 Aug; 94(2):233-7; discussion 238-40. PubMed ID: 8041813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-engineered growth of cartilage: the effect of varying the concentration of chondrocytes seeded onto synthetic polymer matrices.
    Puelacher WC; Kim SW; Vacanti JP; Schloo B; Mooney D; Vacanti CA
    Int J Oral Maxillofac Surg; 1994 Feb; 23(1):49-53. PubMed ID: 8163862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes.
    Schneider T; Kohl B; Sauter T; Kratz K; Lendlein A; Ertel W; Schulze-Tanzil G
    Clin Hemorheol Microcirc; 2012; 52(2-4):325-36. PubMed ID: 22975946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering.
    Mercier NR; Costantino HR; Tracy MA; Bonassar LJ
    Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of synthetic polymeric structures for cell transplantation and tissue engineering.
    Cohen S; Baño MC; Cima LG; Allcock HR; Vacanti JP; Vacanti CA; Langer R
    Clin Mater; 1993; 13(1-4):3-10. PubMed ID: 10146238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the implant type tissue-engineered cartilage by scanning acoustic microscopy.
    Tanaka Y; Saijo Y; Fujihara Y; Yamaoka H; Nishizawa S; Nagata S; Ogasawara T; Asawa Y; Takato T; Hoshi K
    J Biosci Bioeng; 2012 Feb; 113(2):252-7. PubMed ID: 22138383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human polymer-based cartilage grafts for the regeneration of articular cartilage defects.
    Endres M; Neumann K; Schröder SE; Vetterlein S; Morawietz L; Ringe J; Sittinger M; Kaps C
    Tissue Cell; 2007 Oct; 39(5):293-301. PubMed ID: 17688898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices.
    Vacanti CA; Upton J
    Clin Plast Surg; 1994 Jul; 21(3):445-62. PubMed ID: 7924143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.
    Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J
    Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered cartilage for implantation and grafting.
    Park SS; Ward MJ
    Facial Plast Surg; 1995 Oct; 11(4):278-83. PubMed ID: 9046616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of novel biomaterials for bone and cartilage tissue engineering].
    Kawazoe N; Chen G; Tateishi T
    Clin Calcium; 2008 Dec; 18(12):1713-20. PubMed ID: 19043184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels.
    Kim SS; Utsunomiya H; Koski JA; Wu BM; Cima MJ; Sohn J; Mukai K; Griffith LG; Vacanti JP
    Ann Surg; 1998 Jul; 228(1):8-13. PubMed ID: 9671060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable polymers.
    Lu L; Mikos AG
    Sci Med (Phila); 1999; 6(1):6-7. PubMed ID: 11757573
    [No Abstract]   [Full Text] [Related]  

  • 17. Cell transplantation as replacement therapy for the future.
    Asonuma K; Vacanti JP
    Crit Care Nurs Clin North Am; 1992 Jun; 4(2):249-54. PubMed ID: 1599646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study.
    Chu CR; Coutts RD; Yoshioka M; Harwood FL; Monosov AZ; Amiel D
    J Biomed Mater Res; 1995 Sep; 29(9):1147-54. PubMed ID: 8567713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Molecular characterization of tissue-engineered articular chondrocyte transplants based on resorbable polymer fleece].
    Kaps C; Fuchs S; Endres M; Vetterlein S; Krenn V; Perka C; Sittinger M
    Orthopade; 2004 Jan; 33(1):76-85. PubMed ID: 14747914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies.
    Saxena AK; Marler J; Benvenuto M; Willital GH; Vacanti JP
    Tissue Eng; 1999 Dec; 5(6):525-32. PubMed ID: 10611544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.