BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16521037)

  • 21. Dissection of the Plasmodium vivax reticulocyte binding-like proteins (PvRBPs).
    Li J; Han ET
    Biochem Biophys Res Commun; 2012 Sep; 426(1):1-6. PubMed ID: 22925889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constitutive formation of caveolae in a bacterium.
    Walser PJ; Ariotti N; Howes M; Ferguson C; Webb R; Schwudke D; Leneva N; Cho KJ; Cooper L; Rae J; Floetenmeyer M; Oorschot VM; Skoglund U; Simons K; Hancock JF; Parton RG
    Cell; 2012 Aug; 150(4):752-63. PubMed ID: 22901807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raft association and lipid droplet targeting of flotillins are independent of caveolin.
    Rajendran L; Le Lay S; Illges H
    Biol Chem; 2007 Mar; 388(3):307-14. PubMed ID: 17338638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On cytoadhesion of Plasmodium vivax: raison d'être?
    Costa FT; Lopes SC; Ferrer M; Leite JA; Martin-Jaular L; Bernabeu M; Nogueira PA; Mourão MP; Fernandez-Becerra C; Lacerda MV; del Portillo H
    Mem Inst Oswaldo Cruz; 2011 Aug; 106 Suppl 1():79-84. PubMed ID: 21881760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification, expression, localization and serological characterization of a tryptophan-rich antigen from the human malaria parasite Plasmodium vivax.
    Jalah R; Sarin R; Sud N; Alam MT; Parikh N; Das TK; Sharma YD
    Mol Biochem Parasitol; 2005 Aug; 142(2):158-69. PubMed ID: 15869815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pathophysiology of vivax malaria.
    Anstey NM; Russell B; Yeo TW; Price RN
    Trends Parasitol; 2009 May; 25(5):220-7. PubMed ID: 19349210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vesicle-mediated transport of membrane and proteins in malaria-infected erythrocytes.
    Barnwell JW
    Blood Cells; 1990; 16(2-3):379-95. PubMed ID: 2257319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Caveolae: biochemical analysis.
    Chatenay-Rivauday C; Cakar ZP; Jenö P; Kuzmenko ES; Fiedler K
    Mol Biol Rep; 2004 Jun; 31(2):67-84. PubMed ID: 15293782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caveolin expression and localization in human keratinocytes suggest a role in lamellar granule biogenesis.
    Sando GN; Zhu H; Weis JM; Richman JT; Wertz PW; Madison KC
    J Invest Dermatol; 2003 Apr; 120(4):531-41. PubMed ID: 12648214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmodium vivax malaria: parasite biology defines potential targets for vaccine development.
    David PH; del Portillo HA; Mendis KN
    Biol Cell; 1988; 64(2):251-60. PubMed ID: 3067803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Ultrastructure of erythrocytic stage of Plasmodium vivax in humans].
    Gao XZ; Ye XS; Wang SH
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 1992; 10(2):117-9. PubMed ID: 1394907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Getting down to malarial nuts and bolts: the interaction between Plasmodium vivax merozoites and their host erythrocytes.
    Rayner J
    Mol Microbiol; 2005 Mar; 55(5):1297-9. PubMed ID: 15720540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico analysis for structure, function and T-cell epitopes of a hypothetical conserved (HP-C) protein coded by PVX_092425 in Plasmodium vivax.
    Mo J; Li J
    Pathog Glob Health; 2015 Mar; 109(2):61-7. PubMed ID: 25706099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conserved residues in the Plasmodium vivax Duffy-binding protein ligand domain are critical for erythrocyte receptor recognition.
    VanBuskirk KM; Sevova E; Adams JH
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15754-9. PubMed ID: 15498870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a stomatin orthologue in vacuoles induced in human erythrocytes by malaria parasites. A role for microbial raft proteins in apicomplexan vacuole biogenesis.
    Hiller NL; Akompong T; Morrow JS; Holder AA; Haldar K
    J Biol Chem; 2003 Nov; 278(48):48413-21. PubMed ID: 12968029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein trafficking in malaria-infected erythrocytes.
    Foley M; Tilley L
    Int J Parasitol; 1998 Nov; 28(11):1671-80. PubMed ID: 9846603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Plasmodium vivax Pv41 surface protein: identification and characterization.
    Angel DI; Mongui A; Ardila J; Vanegas M; Patarroyo MA
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1113-7. PubMed ID: 18983983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blood-Stage Parasitaemia and Age Determine Plasmodium falciparum and P. vivax Gametocytaemia in Papua New Guinea.
    Koepfli C; Robinson LJ; Rarau P; Salib M; Sambale N; Wampfler R; Betuela I; Nuitragool W; Barry AE; Siba P; Felger I; Mueller I
    PLoS One; 2015; 10(5):e0126747. PubMed ID: 25996916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ex-vivo short-term culture and developmental assessment of Plasmodium vivax.
    Chotivanich K; Silamut K; Udomsangpetch R; Stepniewska KA; Pukrittayakamee S; Looareesuwan S; White NJ
    Trans R Soc Trop Med Hyg; 2001; 95(6):677-80. PubMed ID: 11816444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for trafficking of PfEMP1 to the surface of P. falciparum-infected erythrocytes via a complex membrane network.
    Wickert H; Wissing F; Andrews KT; Stich A; Krohne G; Lanzer M
    Eur J Cell Biol; 2003 Jun; 82(6):271-84. PubMed ID: 12868595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.