These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 16521129)
1. Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention. Yeung KS; Yamanaka GA; Meanwell NA Med Res Rev; 2006 Jul; 26(4):414-33. PubMed ID: 16521129 [TBL] [Abstract][Full Text] [Related]
2. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. Zhu Y; Yu D; Yan H; Chong H; He Y J Virol; 2020 Jul; 94(14):. PubMed ID: 32376627 [TBL] [Abstract][Full Text] [Related]
3. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Du L; He Y; Zhou Y; Liu S; Zheng BJ; Jiang S Nat Rev Microbiol; 2009 Mar; 7(3):226-36. PubMed ID: 19198616 [TBL] [Abstract][Full Text] [Related]
4. Severe acute respiratory syndrome coronavirus entry as a target of antiviral therapies. Kuhn JH; Li W; Radoshitzky SR; Choe H; Farzan M Antivir Ther; 2007; 12(4 Pt B):639-50. PubMed ID: 17944271 [TBL] [Abstract][Full Text] [Related]
5. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Kuhn JH; Li W; Choe H; Farzan M Cell Mol Life Sci; 2004 Nov; 61(21):2738-43. PubMed ID: 15549175 [TBL] [Abstract][Full Text] [Related]
6. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. Matsuyama S; Nagata N; Shirato K; Kawase M; Takeda M; Taguchi F J Virol; 2010 Dec; 84(24):12658-64. PubMed ID: 20926566 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. Li F J Virol; 2008 Jul; 82(14):6984-91. PubMed ID: 18448527 [TBL] [Abstract][Full Text] [Related]
8. Insights from the association of SARS-CoV S-protein with its receptor, ACE2. Li W; Choe H; Farzan M Adv Exp Med Biol; 2006; 581():209-18. PubMed ID: 17037532 [No Abstract] [Full Text] [Related]
9. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Haga S; Yamamoto N; Nakai-Murakami C; Osawa Y; Tokunaga K; Sata T; Yamamoto N; Sasazuki T; Ishizaka Y Proc Natl Acad Sci U S A; 2008 Jun; 105(22):7809-14. PubMed ID: 18490652 [TBL] [Abstract][Full Text] [Related]
10. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Li F; Li W; Farzan M; Harrison SC Science; 2005 Sep; 309(5742):1864-8. PubMed ID: 16166518 [TBL] [Abstract][Full Text] [Related]
11. Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state. Hakansson-McReynolds S; Jiang S; Rong L; Caffrey M J Biol Chem; 2006 Apr; 281(17):11965-71. PubMed ID: 16507566 [TBL] [Abstract][Full Text] [Related]
12. Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain. Pak JE; Sharon C; Satkunarajah M; Auperin TC; Cameron CM; Kelvin DJ; Seetharaman J; Cochrane A; Plummer FA; Berry JD; Rini JM J Mol Biol; 2009 May; 388(4):815-23. PubMed ID: 19324051 [TBL] [Abstract][Full Text] [Related]
13. Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. Hwang WC; Lin Y; Santelli E; Sui J; Jaroszewski L; Stec B; Farzan M; Marasco WA; Liddington RC J Biol Chem; 2006 Nov; 281(45):34610-6. PubMed ID: 16954221 [TBL] [Abstract][Full Text] [Related]
14. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design. Aydin H; Al-Khooly D; Lee JE Protein Sci; 2014 May; 23(5):603-17. PubMed ID: 24519901 [TBL] [Abstract][Full Text] [Related]
15. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Liu S; Xiao G; Chen Y; He Y; Niu J; Escalante CR; Xiong H; Farmar J; Debnath AK; Tien P; Jiang S Lancet; 2004 Mar; 363(9413):938-47. PubMed ID: 15043961 [TBL] [Abstract][Full Text] [Related]
16. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. Song W; Gui M; Wang X; Xiang Y PLoS Pathog; 2018 Aug; 14(8):e1007236. PubMed ID: 30102747 [TBL] [Abstract][Full Text] [Related]
17. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Bosch BJ; Martina BE; Van Der Zee R; Lepault J; Haijema BJ; Versluis C; Heck AJ; De Groot R; Osterhaus AD; Rottier PJ Proc Natl Acad Sci U S A; 2004 Jun; 101(22):8455-60. PubMed ID: 15150417 [TBL] [Abstract][Full Text] [Related]
18. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Hou Y; Peng C; Yu M; Li Y; Han Z; Li F; Wang LF; Shi Z Arch Virol; 2010 Oct; 155(10):1563-9. PubMed ID: 20567988 [TBL] [Abstract][Full Text] [Related]
19. Identification of a new region of SARS-CoV S protein critical for viral entry. Guo Y; Tisoncik J; McReynolds S; Farzan M; Prabhakar BS; Gallagher T; Rong L; Caffrey M J Mol Biol; 2009 Dec; 394(4):600-5. PubMed ID: 19853613 [TBL] [Abstract][Full Text] [Related]
20. Infection of human airway epithelia by SARS coronavirus is associated with ACE2 expression and localization. Jia HP; Look DC; Hickey M; Shi L; Pewe L; Netland J; Farzan M; Wohlford-Lenane C; Perlman S; McCray PB Adv Exp Med Biol; 2006; 581():479-84. PubMed ID: 17037581 [No Abstract] [Full Text] [Related] [Next] [New Search]