BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16521141)

  • 1. Laboratory evolution of P450 BM-3 for mediated electron transfer.
    Nazor J; Schwaneberg U
    Chembiochem; 2006 Apr; 7(4):638-44. PubMed ID: 16521141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant.
    Nazor J; Dannenmann S; Adjei RO; Fordjour YB; Ghampson IT; Blanusa M; Roccatano D; Schwaneberg U
    Protein Eng Des Sel; 2008 Jan; 21(1):29-35. PubMed ID: 18093991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive assay for laboratory evolution of hydroxylases toward aromatic and heterocyclic compounds.
    Wong TS; Wu N; Roccatano D; Zacharias M; Schwaneberg U
    J Biomol Screen; 2005 Apr; 10(3):246-52. PubMed ID: 15809320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First steps towards a Zn/Co(III)sep-driven P450 BM3 reactor.
    Zhao L; Güven G; Li Y; Schwaneberg U
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):989-99. PubMed ID: 21562982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory evolution of cytochrome p450 BM-3 monooxygenase for organic cosolvents.
    Wong TS; Arnold FH; Schwaneberg U
    Biotechnol Bioeng; 2004 Feb; 85(3):351-8. PubMed ID: 14748091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of key active-site residues in flavocytochrome P450 BM3.
    Noble MA; Miles CS; Chapman SK; Lysek DA; MacKay AC; Reid GA; Hanzlik RP; Munro AW
    Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):371-9. PubMed ID: 10191269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of kinetic isotope effects to delineate the role of phenylalanine 87 in P450(BM-3).
    Rock DA; Boitano AE; Wahlstrom JL; Rock DA; Jones JP
    Bioorg Chem; 2002 Apr; 30(2):107-18. PubMed ID: 12020135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A.
    Schwaneberg U; Schmidt-Dannert C; Schmitt J; Schmid RD
    Anal Biochem; 1999 May; 269(2):359-66. PubMed ID: 10222011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.
    Peters MW; Meinhold P; Glieder A; Arnold FH
    J Am Chem Soc; 2003 Nov; 125(44):13442-50. PubMed ID: 14583039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of P450cin for mediated electron transfer.
    Belsare KD; Horn T; Ruff AJ; Martinez R; Magnusson A; Holtmann D; Schrader J; Schwaneberg U
    Protein Eng Des Sel; 2017 Feb; 30(2):119-127. PubMed ID: 28007937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward understanding the inactivation mechanism of monooxygenase P450 BM-3 by organic cosolvents: a molecular dynamics simulation study.
    Roccatano D; Wong TS; Schwaneberg U; Zacharias M
    Biopolymers; 2006 Dec; 83(5):467-76. PubMed ID: 16862534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P450 in biotechnology: zinc driven omega-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst.
    Schwaneberg U; Appel D; Schmitt J; Schmid RD
    J Biotechnol; 2000 Dec; 84(3):249-57. PubMed ID: 11164266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards gamma- and delta-positions.
    Dietrich M; Do TA; Schmid RD; Pleiss J; Urlacher VB
    J Biotechnol; 2009 Jan; 139(1):115-7. PubMed ID: 18984016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen activation and electron transfer in flavocytochrome P450 BM3.
    Ost TW; Clark J; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK; Daff S
    J Am Chem Soc; 2003 Dec; 125(49):15010-20. PubMed ID: 14653735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase.
    Neeli R; Girvan HM; Lawrence A; Warren MJ; Leys D; Scrutton NS; Munro AW
    FEBS Lett; 2005 Oct; 579(25):5582-8. PubMed ID: 16214136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical role of the residue size at position 87 in H2O2- dependent substrate hydroxylation activity and H2O2 inactivation of cytochrome P450BM-3.
    Li QS; Ogawa J; Shimizu S
    Biochem Biophys Res Commun; 2001 Feb; 280(5):1258-61. PubMed ID: 11162663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein engineering of the cytochrome P450 monooxygenase from Bacillus megaterium.
    Urlacher VB; Schmid RD
    Methods Enzymol; 2004; 388():208-24. PubMed ID: 15289074
    [No Abstract]   [Full Text] [Related]  

  • 19. Crystallographic insights into a cobalt (III) sepulchrate based alternative cofactor system of P450 BM3 monooxygenase.
    Panneerselvam S; Shehzad A; Mueller-Dieckmann J; Wilmanns M; Bocola M; Davari MD; Schwaneberg U
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):134-140. PubMed ID: 28739446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparative use of isolated CYP102 monooxygenases -- a critical appraisal.
    Eiben S; Kaysser L; Maurer S; Kühnel K; Urlacher VB; Schmid RD
    J Biotechnol; 2006 Aug; 124(4):662-9. PubMed ID: 16716428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.