These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 16521578)
1. Degradation/solubilization of Chinese lignite by Penicillium sp. P6. Yuan HL; Yang JS; Wang FQ; Chen WX Prikl Biokhim Mikrobiol; 2006; 42(1):59-62. PubMed ID: 16521578 [TBL] [Abstract][Full Text] [Related]
2. Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat. Morgan TJ; Herod AA; Brain SA; Chambers FM; Kandiyoti R J Chromatogr A; 2005 Nov; 1095(1-2):81-8. PubMed ID: 16275286 [TBL] [Abstract][Full Text] [Related]
3. Effects of pollution on humic substances. Schnitzer M; Kerndorff H J Environ Sci Health B; 1980; 15(4):431-56. PubMed ID: 6447171 [TBL] [Abstract][Full Text] [Related]
4. Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. Kurková M; Klika Z; Kliková C; Havel J Chemosphere; 2004 Feb; 54(8):1237-45. PubMed ID: 14664853 [TBL] [Abstract][Full Text] [Related]
5. Determining the role of human substances in the fate of pesticides in the environment. Khan SU J Environ Sci Health B; 1980; 15(6):1071-90. PubMed ID: 6449524 [TBL] [Abstract][Full Text] [Related]
6. Processes of liquefaction/solubilization of Spanish coals by microorganisms. Laborda F; Monistrol IF; Luna N; Fernandez M Appl Microbiol Biotechnol; 1999 Jul; 52(1):49-56. PubMed ID: 10461369 [TBL] [Abstract][Full Text] [Related]
7. Biodegradation of Leonardite by an alkali-producing bacterial community and characterization of the degraded products. Gao TG; Jiang F; Yang JS; Li BZ; Yuan HL Appl Microbiol Biotechnol; 2012 Mar; 93(6):2581-90. PubMed ID: 22075634 [TBL] [Abstract][Full Text] [Related]
8. A speciation methodology to study the contributions of humic-like and fulvic-like acids to the mobilization of metals from compost using size exclusion chromatography-ultraviolet absorption-inductively coupled plasma mass spectrometry and deconvolution analysis. Laborda F; Bolea E; Górriz MP; Martín-Ruiz MP; Ruiz-Beguería S; Castillo JR Anal Chim Acta; 2008 Jan; 606(1):1-8. PubMed ID: 18068764 [TBL] [Abstract][Full Text] [Related]
9. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine. Chai B; Wu Y; Liu P; Liu B; Gao M J Basic Microbiol; 2011 Feb; 51(1):5-14. PubMed ID: 21259286 [TBL] [Abstract][Full Text] [Related]
10. Charge characteristics of humic and fulvic acids: comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model. Bratskaya S; Golikov A; Lutsenko T; Nesterova O; Dudarchik V Chemosphere; 2008 Sep; 73(4):557-63. PubMed ID: 18657293 [TBL] [Abstract][Full Text] [Related]
11. Extracellular enzyme activities of Bjerkandera adusta R59 soil strain, capable of daunomycin and humic acids degradation. Belcarz A; Ginalska G; Kornillowicz-Kowalska T Appl Microbiol Biotechnol; 2005 Sep; 68(5):686-94. PubMed ID: 15711793 [TBL] [Abstract][Full Text] [Related]
12. [The behavior of fungal humic acids in the soil]. Müller G; Kleinhempel D; Klein W Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1969; 123(7):677-82. PubMed ID: 5396106 [No Abstract] [Full Text] [Related]
13. Degradation of humic acids by manganese peroxidase from the white-rot fungus Clitocybula dusenii. Ziegenhagen D; Hofrichter M J Basic Microbiol; 1998; 38(4):289-99. PubMed ID: 9791950 [TBL] [Abstract][Full Text] [Related]
14. [Microbial succession on lignite along with weathering]. Yuan H; Chen W; Kimura M Wei Sheng Wu Xue Bao; 1998 Dec; 38(6):411-6. PubMed ID: 12548918 [TBL] [Abstract][Full Text] [Related]
15. Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique. Kirishima A; Ohnishi T; Sato N; Tochiyama O Talanta; 2009 Jul; 79(2):446-53. PubMed ID: 19559903 [TBL] [Abstract][Full Text] [Related]
16. Effect of pH and ionic strength on the binding of paraquat and MCPA by soil fulvic and humic acids. Iglesias A; López R; Gondar D; Antelo J; Fiol S; Arce F Chemosphere; 2009 Jun; 76(1):107-13. PubMed ID: 19269671 [TBL] [Abstract][Full Text] [Related]
17. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Wei Z; Xi B; Zhao Y; Wang S; Liu H; Jiang Y Chemosphere; 2007 Jun; 68(2):368-74. PubMed ID: 17313970 [TBL] [Abstract][Full Text] [Related]
18. Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals. Chien SW; Wang MC; Huang CC; Seshaiah K J Agric Food Chem; 2007 Jun; 55(12):4820-7. PubMed ID: 17497878 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of oxidation stability of lignite humic substances by DSC induction period measurement. Kucerík J; Kovár J; Pekar M; Simon P Naturwissenschaften; 2005 Jul; 92(7):336-40. PubMed ID: 15905976 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chai X; Shimaoka T; Cao X; Guo Q; Zhao Y Chemosphere; 2007 Nov; 69(9):1446-53. PubMed ID: 17585995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]