BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16521698)

  • 21. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.
    Boatright WL
    Food Chem; 2016 Apr; 196():1361-7. PubMed ID: 26593628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of exogenous iron and ascorbate on H2O2-induced glutathione oxidation in red cells.
    Baysal E; Sullivan SG; Stern A
    Biochem Int; 1988 Aug; 17(2):211-5. PubMed ID: 3190721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dehydroascorbic acid prevents oxidative cell death through a glutathione pathway in primary astrocytes.
    Kim EJ; Park YG; Baik EJ; Jung SJ; Won R; Nahm TS; Lee BH
    J Neurosci Res; 2005 Mar; 79(5):670-9. PubMed ID: 15668957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiol and redox reactive agents exert different effects on glutathione metabolism in HeLa cell cultures.
    Hultberg B; Andersson A; Isaksson A
    Clin Chim Acta; 1999 May; 283(1-2):21-32. PubMed ID: 10404728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox modifications of cysteine-containing proteins, cell cycle arrest and translation inhibition: Involvement in vitamin C-induced breast cancer cell death.
    El Banna N; Hatem E; Heneman-Masurel A; Léger T; Baïlle D; Vernis L; Garcia C; Martineau S; Dupuy C; Vagner S; Camadro JM; Huang ME
    Redox Biol; 2019 Sep; 26():101290. PubMed ID: 31412312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide-induced resistance to hydrogen peroxide stress is a glutamate cysteine ligase activity-dependent process.
    Ridnour LA; Sim JE; Choi J; Dickinson DA; Forman HJ; Ahmad IM; Coleman MC; Hunt CR; Goswami PC; Spitz DR
    Free Radic Biol Med; 2005 May; 38(10):1361-71. PubMed ID: 15855054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals.
    Folkes LK; Christlieb M; Madej E; Stratford MR; Wardman P
    Chem Res Toxicol; 2007 Dec; 20(12):1885-94. PubMed ID: 17941699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutathione oxidation and PTPase inhibition by hydrogen peroxide in Caco-2 cell monolayer.
    Rao RK; Li L; Baker RD; Baker SS; Gupta A
    Am J Physiol Gastrointest Liver Physiol; 2000 Aug; 279(2):G332-40. PubMed ID: 10915642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ascorbic acid and beta-carotene as modulators of oxidative damage.
    Cozzi R; Ricordy R; Aglitti T; Gatta V; Perticone P; De Salvia R
    Carcinogenesis; 1997 Jan; 18(1):223-8. PubMed ID: 9054610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron-mediated oxidative stress in erythrocytes.
    Rice-Evans C; Baysal E
    Biochem J; 1987 May; 244(1):191-6. PubMed ID: 3663112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of reactive oxygen species and DNA strand breakage during interaction of chromium (III) and hydrogen peroxide in vitro: evidence for a chromium (III)-mediated Fenton-like reaction.
    Tsou TC; Yang JL
    Chem Biol Interact; 1996 Dec; 102(3):133-53. PubMed ID: 9021167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid.
    Thamilselvan V; Menon M; Thamilselvan S
    BJU Int; 2014 Jul; 114(1):140-50. PubMed ID: 24460843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The uptake of ascorbic acid into human umbilical vein endothelial cells and its effect on oxidant insult.
    Ek A; Ström K; Cotgreave IA
    Biochem Pharmacol; 1995 Oct; 50(9):1339-46. PubMed ID: 7503781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogen peroxide mediates the killing of U937 tumor cells elicited by pharmacologically attainable concentrations of ascorbic acid: cell death prevention by extracellular catalase or catalase from cocultured erythrocytes or fibroblasts.
    Sestili P; Brandi G; Brambilla L; Cattabeni F; Cantoni O
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1719-25. PubMed ID: 8667243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N,N'-bis-(3,4,5-trimethoxybenzyl) ethylenediamine N,N'-diacetic acid as a new iron chelator with potential medicinal applications against oxidative stress.
    Galey JB; Dumats J; Genard S; Destree O; Pichaud P; Cctroux P; Marrot L; Beck I; Fernandez B; Barre G
    Biochem Pharmacol; 1996 Jan; 51(2):103-15. PubMed ID: 8615878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential in vitro effects of homoarginine on oxidative stress in plasma, erythrocytes, kidney and liver of rats in the absence and in the presence α-tocopherol, ascorbic acid or L-NAME.
    Sasso S; Dalmedico L; Magro DD; Pereira EM; Wyse AT; de Lima DD
    Amino Acids; 2015 Sep; 47(9):1931-9. PubMed ID: 25894889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genotoxic effect of ethacrynic acid and impact of antioxidants.
    Ward WM; Hoffman JD; Loo G
    Toxicol Appl Pharmacol; 2015 Jul; 286(1):17-26. PubMed ID: 25817893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of lipid peroxidation and protein oxidation biomarkers for oxidative damage in mammalian cells. A comparison with two fluorescent probes.
    Orhan H; Gurer-Orhan H; Vriese E; Vermeulen NP; Meerman JH
    Toxicol In Vitro; 2006 Sep; 20(6):1005-13. PubMed ID: 16488111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions.
    Jornot L; Petersen H; Junod AF
    Biochem J; 1998 Oct; 335 ( Pt 1)(Pt 1):85-94. PubMed ID: 9742216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 (L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism.
    Okamoto K; Tanaka H; Makino Y; Makino I
    Biochem Pharmacol; 1998 Jul; 56(1):79-86. PubMed ID: 9698091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.