BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16521702)

  • 1. Expression of calbindin-D9k, VDR and Cdx-2 messenger RNA in the process by which fructooligosaccharides increase calcium absorption in rats.
    Fukushima A; Ohta A; Sakai K; Sakuma K
    J Nutr Sci Vitaminol (Tokyo); 2005 Dec; 51(6):426-32. PubMed ID: 16521702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-chain fatty acids increase the level of calbindin-D9k messenger RNA in Caco-2 cells.
    Fukushima A; Aizaki Y; Sakuma K
    J Nutr Sci Vitaminol (Tokyo); 2012; 58(4):287-91. PubMed ID: 23132313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats.
    Ohta A; Motohashi Y; Ohtsuki M; Hirayama M; Adachi T; Sakuma K
    J Nutr; 1998 Jun; 128(6):934-9. PubMed ID: 9614150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors involved in the duodenal expression of the human calbindin-D9k gene.
    Barley NF; Prathalingam SR; Zhi P; Legon S; Howard A; Walters JR
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):491-500. PubMed ID: 10417310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of vitamin D-dependent calcium-binding protein messenger ribonucleic acid expression in mice lacking the vitamin D receptor.
    Li YC; Pirro AE; Demay MB
    Endocrinology; 1998 Mar; 139(3):847-51. PubMed ID: 9492012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hormones and development on the expression of the rat 1,25-dihydroxyvitamin D3 receptor gene. Comparison with calbindin gene expression.
    Huang YC; Lee S; Stolz R; Gabrielides C; Pansini-Porta A; Bruns ME; Bruns DE; Miffin TE; Pike JW; Christakos S
    J Biol Chem; 1989 Oct; 264(29):17454-61. PubMed ID: 2551904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of differentiation-induced calbindin-D9k gene expression in Caco-2 cells by cdx-2 and HNF-1alpha.
    Wang L; Klopot A; Freund JN; Dowling LN; Krasinski SD; Fleet JC
    Am J Physiol Gastrointest Liver Physiol; 2004 Nov; 287(5):G943-53. PubMed ID: 15217781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary short-chain fructooligosaccharides increase calbindin-D9k levels only in the large intestine in rats independent of dietary calcium deficiency or serum 1,25 dihydroxy vitamin D levels.
    Takasaki M; Inaba H; Ohta A; Motohashi Y; Sakai K; Morris H; Sakuma K
    Int J Vitam Nutr Res; 2000 Sep; 70(5):206-13. PubMed ID: 11068700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis-Acting elements and transcription factors involved in the intestinal specific expression of the rat calbindin-D9K gene: binding of the intestine-specific transcription factor Cdx-2 to the TATA box.
    Lambert M; Colnot S; Suh E; L'Horset F; Blin C; Calliot ME; Raymondjean M; Thomasset M; Traber PG; Perret C
    Eur J Biochem; 1996 Mar; 236(3):778-88. PubMed ID: 8665895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary fructooligosaccharides increase calcium absorption and levels of mucosal calbindin-D9k in the large intestine of gastrectomized rats.
    Ohta A; Motohashi Y; Sakai K; Hirayama M; Adachi T; Sakuma K
    Scand J Gastroenterol; 1998 Oct; 33(10):1062-8. PubMed ID: 9829361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duodenal calcium binding protein and active calcium transport in rats: are they functionally related?
    Chabanis S; Hanrotel C; Duchambon P; Banide H; Kubrusly M; Aymard P; Lacour B; Drüeke T
    Nephrol Dial Transplant; 1994; 9(10):1402-7. PubMed ID: 7816252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-chain fatty acids induce intestinal transient receptor potential vanilloid type 6 expression in rats and Caco-2 cells.
    Fukushima A; Aizaki Y; Sakuma K
    J Nutr; 2009 Jan; 139(1):20-5. PubMed ID: 19056662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidermal growth factor increases intestinal calbindin-D9k and 1,25-dihydroxyvitamin D receptors in neonatal rats.
    Bruns DE; Krishnan AV; Feldman D; Gray RW; Christakos S; Hirsch GN; Bruns ME
    Endocrinology; 1989 Jul; 125(1):478-85. PubMed ID: 2544409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of rat calbindin expression during development determined by bacterially expressed protein.
    Fukushima A; Motohashi Y; Sakuma K
    J Nutr Sci Vitaminol (Tokyo); 1998 Feb; 44(1):137-49. PubMed ID: 9591241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of vitamin D receptor inactivation on the expression of calbindins and calcium metabolism.
    Li YC; Bolt MJ; Cao LP; Sitrin MD
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E558-64. PubMed ID: 11500311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperresponsiveness of vitamin D receptor gene expression to 1,25-dihydroxyvitamin D3. A new characteristic of genetic hypercalciuric stone-forming rats.
    Yao J; Kathpalia P; Bushinsky DA; Favus MJ
    J Clin Invest; 1998 May; 101(10):2223-32. PubMed ID: 9593778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary calcium and 1,25-dihydroxyvitamin D3 regulate transcription of calcium transporter genes in calbindin-D9k knockout mice.
    Ko SH; Lee GS; Vo TT; Jung EM; Choi KC; Cheung KW; Kim JW; Park JG; Oh GT; Jeung EB
    J Reprod Dev; 2009 Apr; 55(2):137-42. PubMed ID: 19106481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased abundance of alkaline phosphatase and calbindin-D9K mRNAs in the intestine of the spontaneously hypertensive rat.
    Leetun DT; Bruns ME; Bruns DE
    Clin Chem; 1992 Dec; 38(12):2526-31. PubMed ID: 1333919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable in vivo regulation of rat vitamin D-dependent genes (osteopontin, Ca,Mg-adenosine triphosphatase, and 25-hydroxyvitamin D3 24-hydroxylase): implications for differing mechanisms of regulation and involvement of multiple factors.
    Matkovits T; Christakos S
    Endocrinology; 1995 Sep; 136(9):3971-82. PubMed ID: 7649106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism for the disparate actions of calcitriol and 22-oxacalcitriol in the intestine.
    Brown AJ; Finch J; Grieff M; Ritter C; Kubodera N; Nishii Y; Slatopolsky E
    Endocrinology; 1993 Sep; 133(3):1158-64. PubMed ID: 8396012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.