These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16522062)

  • 1. Cavity QED with semiconductor nanocrystals.
    Le Thomas N; Woggon U; Schöps O; Artemyev MV; Kazes M; Banin U
    Nano Lett; 2006 Mar; 6(3):557-61. PubMed ID: 16522062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gated quantum dot strongly coupled to an optical microcavity.
    Najer D; Söllner I; Sekatski P; Dolique V; Löbl MC; Riedel D; Schott R; Starosielec S; Valentin SR; Wieck AD; Sangouard N; Ludwig A; Warburton RJ
    Nature; 2019 Nov; 575(7784):622-627. PubMed ID: 31634901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.
    Uemoto M; Ajiki H
    Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity QED with diamond nanocrystals and silica microspheres.
    Park YS; Cook AK; Wang H
    Nano Lett; 2006 Sep; 6(9):2075-9. PubMed ID: 16968028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled Colloidal Quantum Dot Molecules.
    Koley S; Cui J; Panfil YE; Banin U
    Acc Chem Res; 2021 Mar; 54(5):1178-1188. PubMed ID: 33459013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy.
    Gellen TA; Lem J; Turner DB
    Nano Lett; 2017 May; 17(5):2809-2815. PubMed ID: 28422505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system.
    Hughes S; Yao P
    Opt Express; 2009 Mar; 17(5):3322-30. PubMed ID: 19259169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths.
    Cui J; Beyler AP; Coropceanu I; Cleary L; Avila TR; Chen Y; Cordero JM; Heathcote SL; Harris DK; Chen O; Cao J; Bawendi MG
    Nano Lett; 2016 Jan; 16(1):289-96. PubMed ID: 26636347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity.
    Tawara T; Kamada H; Tanabe T; Sogawa T; Okamoto H; Yao P; Pathak PK; Hughes S
    Opt Express; 2010 Feb; 18(3):2719-28. PubMed ID: 20174101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evanescent-Vacuum-Enhanced Photon-Exciton Coupling and Fluorescence Collection.
    Ren J; Gu Y; Zhao D; Zhang F; Zhang T; Gong Q
    Phys Rev Lett; 2017 Feb; 118(7):073604. PubMed ID: 28256881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals.
    Grivas C; Li C; Andreakou P; Wang P; Ding M; Brambilla G; Manna L; Lagoudakis P
    Nat Commun; 2013; 4():2376. PubMed ID: 23974520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room Temperature Coherently Coupled Exciton-Polaritons in Two-Dimensional Organic-Inorganic Perovskite.
    Wang J; Su R; Xing J; Bao D; Diederichs C; Liu S; Liew TCH; Chen Z; Xiong Q
    ACS Nano; 2018 Aug; 12(8):8382-8389. PubMed ID: 30089200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.