These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 16522082)
21. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Wu ZS; Guo MM; Zhang SB; Chen CR; Jiang JH; Shen GL; Yu RQ Anal Chem; 2007 Apr; 79(7):2933-9. PubMed ID: 17338505 [TBL] [Abstract][Full Text] [Related]
22. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Zhang J; Wang L; Pan D; Song S; Boey FY; Zhang H; Fan C Small; 2008 Aug; 4(8):1196-200. PubMed ID: 18651718 [TBL] [Abstract][Full Text] [Related]
23. Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Lubin AA; Lai RY; Baker BR; Heeger AJ; Plaxco KW Anal Chem; 2006 Aug; 78(16):5671-7. PubMed ID: 16906710 [TBL] [Abstract][Full Text] [Related]
24. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Liu J; Lu Y Angew Chem Int Ed Engl; 2005 Dec; 45(1):90-4. PubMed ID: 16292781 [No Abstract] [Full Text] [Related]
25. An aptamer-based electrochemiluminescent biosensor for ATP detection. Yao W; Wang L; Wang H; Zhang X; Li L Biosens Bioelectron; 2009 Jul; 24(11):3269-74. PubMed ID: 19443209 [TBL] [Abstract][Full Text] [Related]
26. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Cheng AK; Sen D; Yu HZ Bioelectrochemistry; 2009 Nov; 77(1):1-12. PubMed ID: 19473883 [TBL] [Abstract][Full Text] [Related]
27. Aptamer sensor for cocaine using minor groove binder based energy transfer. Zhou J; Ellis AV; Kobus H; Voelcker NH Anal Chim Acta; 2012 Mar; 719():76-81. PubMed ID: 22340534 [TBL] [Abstract][Full Text] [Related]
28. Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR Gold, and exonuclease I. Zheng D; Zou R; Lou X Anal Chem; 2012 Apr; 84(8):3554-60. PubMed ID: 22424113 [TBL] [Abstract][Full Text] [Related]
29. Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification. Jiang B; Wang M; Chen Y; Xie J; Xiang Y Biosens Bioelectron; 2012 Feb; 32(1):305-8. PubMed ID: 22204778 [TBL] [Abstract][Full Text] [Related]
30. Target-induced strand release (TISR) from aptamer-DNA duplex: a general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Yoshizumi J; Kumamoto S; Nakamura M; Yamana K Analyst; 2008 Mar; 133(3):323-5. PubMed ID: 18299745 [TBL] [Abstract][Full Text] [Related]
31. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules. Zhou Z; Du Y; Dong S Biosens Bioelectron; 2011 Oct; 28(1):33-7. PubMed ID: 21802935 [TBL] [Abstract][Full Text] [Related]
32. Electrochemical aptamer sensor for small molecule assays. Liu X; Li W; Xu X; Zhou J; Nie Z Methods Mol Biol; 2012; 800():119-32. PubMed ID: 21964786 [TBL] [Abstract][Full Text] [Related]
33. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Golub E; Pelossof G; Freeman R; Zhang H; Willner I Anal Chem; 2009 Nov; 81(22):9291-8. PubMed ID: 19860374 [TBL] [Abstract][Full Text] [Related]
34. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. He JL; Wu ZS; Zhou H; Wang HQ; Jiang JH; Shen GL; Yu RQ Anal Chem; 2010 Feb; 82(4):1358-64. PubMed ID: 20078091 [TBL] [Abstract][Full Text] [Related]
35. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Lubin AA; Plaxco KW Acc Chem Res; 2010 Apr; 43(4):496-505. PubMed ID: 20201486 [TBL] [Abstract][Full Text] [Related]
36. Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads. Ma C; Wang W; Yang Q; Shi C; Cao L Biosens Bioelectron; 2011 Mar; 26(7):3309-12. PubMed ID: 21277763 [TBL] [Abstract][Full Text] [Related]
37. Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip. Kawano R; Osaki T; Sasaki H; Takinoue M; Yoshizawa S; Takeuchi S J Am Chem Soc; 2011 Jun; 133(22):8474-7. PubMed ID: 21553872 [TBL] [Abstract][Full Text] [Related]
38. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Xiao Y; Lai RY; Plaxco KW Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622 [TBL] [Abstract][Full Text] [Related]
39. DNA as a force sensor in an aptamer-based biochip for adenosine. Ho D; Falter K; Severin P; Gaub HE Anal Chem; 2009 Apr; 81(8):3159-64. PubMed ID: 19364143 [TBL] [Abstract][Full Text] [Related]
40. Ultra-high frequency piezoelectric aptasensor for the label-free detection of cocaine. Neves MA; Blaszykowski C; Bokhari S; Thompson M Biosens Bioelectron; 2015 Oct; 72():383-92. PubMed ID: 26022784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]