These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 16522096)
1. Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis. Barondeau DP; Tainer JA; Getzoff ED J Am Chem Soc; 2006 Mar; 128(10):3166-8. PubMed ID: 16522096 [TBL] [Abstract][Full Text] [Related]
2. Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED J Am Chem Soc; 2006 Apr; 128(14):4685-93. PubMed ID: 16594705 [TBL] [Abstract][Full Text] [Related]
3. The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis. Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED J Am Chem Soc; 2007 Mar; 129(11):3118-26. PubMed ID: 17326633 [TBL] [Abstract][Full Text] [Related]
5. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981 [TBL] [Abstract][Full Text] [Related]
6. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. Tubbs JL; Tainer JA; Getzoff ED Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155 [TBL] [Abstract][Full Text] [Related]
7. Reaction progress of chromophore biogenesis in green fluorescent protein. Zhang L; Patel HN; Lappe JW; Wachter RM J Am Chem Soc; 2006 Apr; 128(14):4766-72. PubMed ID: 16594713 [TBL] [Abstract][Full Text] [Related]
8. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Rosenow MA; Huffman HA; Phail ME; Wachter RM Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092 [TBL] [Abstract][Full Text] [Related]
10. The mechanism of cyclization in chromophore maturation of green fluorescent protein: a theoretical study. Ma Y; Sun Q; Zhang H; Peng L; Yu JG; Smith SC J Phys Chem B; 2010 Jul; 114(29):9698-705. PubMed ID: 20593847 [TBL] [Abstract][Full Text] [Related]
11. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation. Rosenow MA; Patel HN; Wachter RM Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620 [TBL] [Abstract][Full Text] [Related]
12. The 2.1A crystal structure of copGFP, a representative member of the copepod clade within the green fluorescent protein superfamily. Wilmann PG; Battad J; Petersen J; Wilce MC; Dove S; Devenish RJ; Prescott M; Rossjohn J J Mol Biol; 2006 Jun; 359(4):890-900. PubMed ID: 16697009 [TBL] [Abstract][Full Text] [Related]
13. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2. Pakhomov AA; Martynov VI Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303 [TBL] [Abstract][Full Text] [Related]
14. Exploring chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy. Nienhaus K; Renzi F; Vallone B; Wiedenmann J; Nienhaus GU Biochemistry; 2006 Oct; 45(43):12942-53. PubMed ID: 17059211 [TBL] [Abstract][Full Text] [Related]