These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16522096)

  • 1. Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis.
    Barondeau DP; Tainer JA; Getzoff ED
    J Am Chem Soc; 2006 Mar; 128(10):3166-8. PubMed ID: 16522096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    J Am Chem Soc; 2006 Apr; 128(14):4685-93. PubMed ID: 16594705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    J Am Chem Soc; 2007 Mar; 129(11):3118-26. PubMed ID: 17326633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Feb; 44(6):1960-70. PubMed ID: 15697221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.
    Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction progress of chromophore biogenesis in green fluorescent protein.
    Zhang L; Patel HN; Lappe JW; Wachter RM
    J Am Chem Soc; 2006 Apr; 128(14):4766-72. PubMed ID: 16594713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.
    Rosenow MA; Huffman HA; Phail ME; Wachter RM
    Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromogenic cross-link formation in green fluorescent protein.
    Wachter RM
    Acc Chem Res; 2007 Feb; 40(2):120-7. PubMed ID: 17309193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of cyclization in chromophore maturation of green fluorescent protein: a theoretical study.
    Ma Y; Sun Q; Zhang H; Peng L; Yu JG; Smith SC
    J Phys Chem B; 2010 Jul; 114(29):9698-705. PubMed ID: 20593847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation.
    Rosenow MA; Patel HN; Wachter RM
    Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 2.1A crystal structure of copGFP, a representative member of the copepod clade within the green fluorescent protein superfamily.
    Wilmann PG; Battad J; Petersen J; Wilce MC; Dove S; Devenish RJ; Prescott M; Rossjohn J
    J Mol Biol; 2006 Jun; 359(4):890-900. PubMed ID: 16697009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2.
    Pakhomov AA; Martynov VI
    Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy.
    Nienhaus K; Renzi F; Vallone B; Wiedenmann J; Nienhaus GU
    Biochemistry; 2006 Oct; 45(43):12942-53. PubMed ID: 17059211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green fluorescent protein: structure, folding and chromophore maturation.
    Craggs TD
    Chem Soc Rev; 2009 Oct; 38(10):2865-75. PubMed ID: 19771333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GFP family: structural insights into spectral tuning.
    Pakhomov AA; Martynov VI
    Chem Biol; 2008 Aug; 15(8):755-64. PubMed ID: 18721746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping proton wires in proteins: carbonic anhydrase and GFP chromophore biosynthesis.
    Shinobu A; Agmon N
    J Phys Chem A; 2009 Jul; 113(26):7253-66. PubMed ID: 19388648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denaturation studies reveal significant differences between GFP and blue fluorescent protein.
    Saeed IA; Ashraf SS
    Int J Biol Macromol; 2009 Oct; 45(3):236-41. PubMed ID: 19501614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein.
    Sniegowski JA; Lappe JW; Patel HN; Huffman HA; Wachter RM
    J Biol Chem; 2005 Jul; 280(28):26248-55. PubMed ID: 15888441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and spectral response of Aequorea victoria green fluorescent proteins to chromophore fluorination.
    Pal PP; Bae JH; Azim MK; Hess P; Friedrich R; Huber R; Moroder L; Budisa N
    Biochemistry; 2005 Mar; 44(10):3663-72. PubMed ID: 15751943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.