BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 16522125)

  • 1. Effects of thioether substituents on the O2 reactivity of beta-diketiminate-Cu(I) complexes: probing the role of the methionine ligand in copper monooxygenases.
    Aboelella NW; Gherman BF; Hill LM; York JT; Holm N; Young VG; Cramer CJ; Tolman WB
    J Am Chem Soc; 2006 Mar; 128(10):3445-58. PubMed ID: 16522125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the structure and reactivity of monocopper-oxygen complexes supported by beta-diketiminate and anilido-imine ligands.
    Gherman BF; Tolman WB; Cramer CJ
    J Comput Chem; 2006 Dec; 27(16):1950-61. PubMed ID: 17019721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models for dioxygen activation by the CuB site of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase.
    Gherman BF; Heppner DE; Tolman WB; Cramer CJ
    J Biol Inorg Chem; 2006 Mar; 11(2):197-205. PubMed ID: 16344970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thioether sulfur oxygenation from O2 or H2O2 reactivity of copper complexes with tridentate N2Sthioether ligands.
    Lee Y; Lee DH; Sarjeant AA; Zakharov LN; Rheingold AL; Karlin KD
    Inorg Chem; 2006 Dec; 45(25):10098-107. PubMed ID: 17140215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H-atom abstraction reaction for organic substrates via mononuclear copper(II)-superoxo species as a model for DbetaM and PHM.
    Fujii T; Yamaguchi S; Hirota S; Masuda H
    Dalton Trans; 2008 Jan; (1):164-70. PubMed ID: 18399242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that dioxygen and substrate activation are tightly coupled in dopamine beta-monooxygenase. Implications for the reactive oxygen species.
    Evans JP; Ahn K; Klinman JP
    J Biol Chem; 2003 Dec; 278(50):49691-8. PubMed ID: 12966104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site.
    Chen P; Solomon EI
    J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate.
    Chen P; Bell J; Eipper BA; Solomon EI
    Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper(I) complex O(2)-reactivity with a N(3)S thioether ligand: a copper-dioxygen adduct including sulfur ligation, ligand oxygenation, and comparisons with all nitrogen ligand analogues.
    Lee DH; Hatcher LQ; Vance MA; Sarangi R; Milligan AE; Sarjeant AA; Incarvito CD; Rheingold AL; Hodgson KO; Hedman B; Solomon EI; Karlin KD
    Inorg Chem; 2007 Jul; 46(15):6056-68. PubMed ID: 17580938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.
    Kunishita A; Ertem MZ; Okubo Y; Tano T; Sugimoto H; Ohkubo K; Fujieda N; Fukuzumi S; Cramer CJ; Itoh S
    Inorg Chem; 2012 Sep; 51(17):9465-80. PubMed ID: 22908844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning of the copper-thioether bond in tetradentate N₃S(thioether) ligands; O-O bond reductive cleavage via a [Cu(II)₂(μ-1,2-peroxo)]²⁺/[Cu(III)₂(μ-oxo)₂]²⁺ equilibrium.
    Kim S; Ginsbach JW; Billah AI; Siegler MA; Moore CD; Solomon EI; Karlin KD
    J Am Chem Soc; 2014 Jun; 136(22):8063-71. PubMed ID: 24854766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase.
    Martin-Diaconescu V; Chacón KN; Delgado-Jaime MU; Sokaras D; Weng TC; DeBeer S; Blackburn NJ
    Inorg Chem; 2016 Apr; 55(7):3431-9. PubMed ID: 26965786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tripodal bis(imidazole) thioether copper(I) complexes: mimics of the Cu(M) site of copper hydroxylase enzymes.
    Zhou L; Powell D; Nicholas KM
    Inorg Chem; 2007 Sep; 46(19):7789-99. PubMed ID: 17713902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-dioxygen adducts and the side-on peroxo dicopper(II)/bis(mu-oxo) dicopper(III) equilibrium: Significant ligand electronic effects.
    Hatcher LQ; Vance MA; Narducci Sarjeant AA; Solomon EI; Karlin KD
    Inorg Chem; 2006 Apr; 45(7):3004-13. PubMed ID: 16562956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical modelling of tripodal CuN3 and CuN4 cuprous complexes interacting with O2, CO or CH3CN.
    de la Lande A; Gérard H; Moliner V; Izzet G; Reinaud O; Parisel O
    J Biol Inorg Chem; 2006 Jul; 11(5):593-608. PubMed ID: 16791643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mononuclear copper(II)-superoxo complexes that mimic the structure and reactivity of the active centers of PHM and DbetaM.
    Kunishita A; Kubo M; Sugimoto H; Ogura T; Sato K; Takui T; Itoh S
    J Am Chem Soc; 2009 Mar; 131(8):2788-9. PubMed ID: 19209864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper chemistry of beta-diketiminate ligands: monomer/dimer equilibria and a new class of bis(mu-oxo)dicopper compounds.
    Spencer DJ; Reynolds AM; Holland PL; Jazdzewski BA; Duboc-Toia C; Le Pape L; Yokota S; Tachi Y; Itoh S; Tolman WB
    Inorg Chem; 2002 Dec; 41(24):6307-21. PubMed ID: 12444774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can an ancillary ligand lead to a thermodynamically stable end-on 1 : 1 Cu-O2 adduct supported by a beta-diketiminate ligand?
    Heppner DE; Gherman BF; Tolman WB; Cramer CJ
    Dalton Trans; 2006 Oct; (40):4773-82. PubMed ID: 17033702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases.
    Cowley RE; Tian L; Solomon EI
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12035-12040. PubMed ID: 27790986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen and hydrogen isotope effects in an active site tyrosine to phenylalanine mutant of peptidylglycine alpha-hydroxylating monooxygenase: mechanistic implications.
    Francisco WA; Blackburn NJ; Klinman JP
    Biochemistry; 2003 Feb; 42(7):1813-9. PubMed ID: 12590568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.