BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16522348)

  • 1. Progress in assisted natural remediation of an arsenic contaminated agricultural soil.
    Mench M; Vangronsveld J; Beckx C; Ruttens A
    Environ Pollut; 2006 Nov; 144(1):51-61. PubMed ID: 16522348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments.
    Mench M; Renella G; Gelsomino A; Landi L; Nannipieri P
    Environ Pollut; 2006 Nov; 144(1):24-31. PubMed ID: 16516362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments.
    Friesl W; Friedl J; Platzer K; Horak O; Gerzabek MH
    Environ Pollut; 2006 Nov; 144(1):40-50. PubMed ID: 16515824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil.
    Kumpiene J; Ore S; Renella G; Mench M; Lagerkvist A; Maurice C
    Environ Pollut; 2006 Nov; 144(1):62-9. PubMed ID: 16517035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ.
    Brown S; Christensen B; Lombi E; McLaughlin M; McGrath S; Colpaert J; Vangronsveld J
    Environ Pollut; 2005 Nov; 138(1):34-45. PubMed ID: 15950344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of cyclonic ash, commercial Na-silicates, lime and phosphoric acid for metal immobilisation purposes in contaminated soils in Flanders (Belgium).
    Geebelen W; Sappin-Didier V; Ruttens A; Carleer R; Yperman J; Bongué-Boma K; Mench M; van der Lelie N; Vangronsveld J
    Environ Pollut; 2006 Nov; 144(1):32-9. PubMed ID: 16507330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants.
    Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F
    Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils.
    Grispen VM; Nelissen HJ; Verkleij JA
    Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming.
    Hong CO; Gutierrez J; Yun SW; Lee YB; Yu C; Kim PJ
    Arch Environ Contam Toxicol; 2009 Feb; 56(2):190-200. PubMed ID: 18704256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.
    Salati S; Quadri G; Tambone F; Adani F
    Environ Pollut; 2010 May; 158(5):1899-906. PubMed ID: 19932537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of metal contaminated soil with mineral-amended composts.
    van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK
    Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn).
    Zhu Y; Yu H; Wang J; Fang W; Yuan J; Yang Z
    J Agric Food Chem; 2007 Feb; 55(3):1045-52. PubMed ID: 17263511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests.
    Hartley W; Edwards R; Lepp NW
    Environ Pollut; 2004 Oct; 131(3):495-504. PubMed ID: 15261413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils.
    Hartley W; Lepp NW
    Environ Pollut; 2008 Dec; 156(3):1030-40. PubMed ID: 18524441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of heavy metals and As-loaded lupin root mineralization to the availability of the pollutants in multi-contaminated soils.
    Vázquez S; Carpena RO; Bernal MP
    Environ Pollut; 2008 Mar; 152(2):373-9. PubMed ID: 17655992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of high zinc and lead tailings with municipal biosolids and lime: a field study.
    Brown S; Svendsen A; Henry C
    J Environ Qual; 2009; 38(6):2189-97. PubMed ID: 19875774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.
    Fayiga AO; Ma LQ
    Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.