BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 16522645)

  • 41. Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases.
    Rázga F; Koca J; Sponer J; Leontis NB
    Biophys J; 2005 May; 88(5):3466-85. PubMed ID: 15722438
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA structure: reading the ribosome.
    Noller HF
    Science; 2005 Sep; 309(5740):1508-14. PubMed ID: 16141058
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis.
    Halder S; Bhattacharyya D
    J Phys Chem B; 2012 Oct; 116(39):11845-56. PubMed ID: 22953716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit.
    Klein DJ; Moore PB; Steitz TA
    J Mol Biol; 2004 Jun; 340(1):141-77. PubMed ID: 15184028
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionary rates vary among rRNA structural elements.
    Smit S; Widmann J; Knight R
    Nucleic Acids Res; 2007; 35(10):3339-54. PubMed ID: 17468501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2.
    Kitahara K; Kajiura A; Sato NS; Suzuki T
    Nucleic Acids Res; 2007; 35(12):4018-29. PubMed ID: 17553838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exact determination of UV-induced crosslinks in 16S ribosomal RNA in 30S ribosomal subunits.
    Wilms C; Noah JW; Zhong D; Wollenzien P
    RNA; 1997 Jun; 3(6):602-12. PubMed ID: 9174095
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural motifs in ribosomal RNAs: implications for RNA design and genomics.
    Zorn J; Gan HH; Shiffeldrim N; Schlick T
    Biopolymers; 2004 Feb; 73(3):340-7. PubMed ID: 14755570
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Periodic conformational changes in rRNA: monitoring the dynamics of translating ribosomes.
    Polacek N; Patzke S; Nierhaus KH; Barta A
    Mol Cell; 2000 Jul; 6(1):159-71. PubMed ID: 10949037
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Topological classification of RNA structures.
    Bon M; Vernizzi G; Orland H; Zee A
    J Mol Biol; 2008 Jun; 379(4):900-11. PubMed ID: 18485361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonbridging phosphate oxygens in 16S rRNA important for 30S subunit assembly and association with the 50S ribosomal subunit.
    Ghosh S; Joseph S
    RNA; 2005 May; 11(5):657-67. PubMed ID: 15811917
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Incorporating a Thiophosphate Modification into a Common RNA Tetraloop Motif Causes an Unanticipated Stability Boost.
    Pallan PS; Lybrand TP; Schlegel MK; Harp JM; Jahns H; Manoharan M; Egli M
    Biochemistry; 2020 Dec; 59(49):4627-4637. PubMed ID: 33275419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome.
    Besseová I; Réblová K; Leontis NB; Sponer J
    Nucleic Acids Res; 2010 Oct; 38(18):6247-64. PubMed ID: 20507916
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine.
    Kouvela EC; Gerbanas GV; Xaplanteri MA; Petropoulos AD; Dinos GP; Kalpaxis DL
    Nucleic Acids Res; 2007; 35(15):5108-19. PubMed ID: 17652323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probing the rRNA environment of ribosomal protein S5 across the subunit interface and inside the 30 S subunit using tethered Fe(II).
    Culver GM; Heilek GM; Noller HF
    J Mol Biol; 1999 Feb; 286(2):355-64. PubMed ID: 9973556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs.
    Cannone JJ; Subramanian S; Schnare MN; Collett JR; D'Souza LM; Du Y; Feng B; Lin N; Madabusi LV; Müller KM; Pande N; Shang Z; Yu N; Gutell RR
    BMC Bioinformatics; 2002; 3():2. PubMed ID: 11869452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 5SRNAdb: an information resource for 5S ribosomal RNAs.
    Szymanski M; Zielezinski A; Barciszewski J; Erdmann VA; Karlowski WM
    Nucleic Acids Res; 2016 Jan; 44(D1):D180-3. PubMed ID: 26490961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction.
    Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recognition of G-U mismatches by tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III).
    Chow CS; Barton JK
    Biochemistry; 1992 Jun; 31(24):5423-9. PubMed ID: 1377020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.