These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 16522650)
1. Human replication protein A can suppress the intrinsic in vitro mutator phenotype of human DNA polymerase lambda. Maga G; Shevelev I; Villani G; Spadari S; Hübscher U Nucleic Acids Res; 2006; 34(5):1405-15. PubMed ID: 16522650 [TBL] [Abstract][Full Text] [Related]
2. Error-free bypass of 2-hydroxyadenine by human DNA polymerase lambda with Proliferating Cell Nuclear Antigen and Replication Protein A in different sequence contexts. Crespan E; Hübscher U; Maga G Nucleic Acids Res; 2007; 35(15):5173-81. PubMed ID: 17666409 [TBL] [Abstract][Full Text] [Related]
3. DNA polymerase lambda directly binds to proliferating cell nuclear antigen through its confined C-terminal region. Shimazaki N; Yazaki T; Kubota T; Sato A; Nakamura A; Kurei S; Toji S; Tamai K; Koiwai O Genes Cells; 2005 Jul; 10(7):705-15. PubMed ID: 15966901 [TBL] [Abstract][Full Text] [Related]
4. Human DNA polymerase lambda diverged in evolution from DNA polymerase beta toward specific Mn(++) dependence: a kinetic and thermodynamic study. Blanca G; Shevelev I; Ramadan K; Villani G; Spadari S; Hübscher U; Maga G Biochemistry; 2003 Jun; 42(24):7467-76. PubMed ID: 12809503 [TBL] [Abstract][Full Text] [Related]
5. Fidelity of DNA polymerase delta holoenzyme from Saccharomyces cerevisiae: the sliding clamp proliferating cell nuclear antigen decreases its fidelity. Hashimoto K; Shimizu K; Nakashima N; Sugino A Biochemistry; 2003 Dec; 42(48):14207-13. PubMed ID: 14640688 [TBL] [Abstract][Full Text] [Related]
6. DNA polymerases beta and lambda bypass thymine glycol in gapped DNA structures. Belousova EA; Maga G; Fan Y; Kubareva EA; Romanova EA; Lebedeva NA; Oretskaya TS; Lavrik OI Biochemistry; 2010 Jun; 49(22):4695-704. PubMed ID: 20423048 [TBL] [Abstract][Full Text] [Related]
7. Effect of 8-oxoguanine and abasic site DNA lesions on in vitro elongation by human DNA polymerase in the presence of replication protein A and proliferating-cell nuclear antigen. Locatelli GA; Pospiech H; Tanguy Le Gac N; van Loon B; Hubscher U; Parkkinen S; Syväoja JE; Villani G Biochem J; 2010 Aug; 429(3):573-82. PubMed ID: 20528769 [TBL] [Abstract][Full Text] [Related]
8. De novo DNA synthesis by human DNA polymerase lambda, DNA polymerase mu and terminal deoxyribonucleotidyl transferase. Ramadan K; Shevelev IV; Maga G; Hübscher U J Mol Biol; 2004 May; 339(2):395-404. PubMed ID: 15136041 [TBL] [Abstract][Full Text] [Related]
9. Human DNA polymerase lambda is a proficient extender of primer ends paired to 7,8-dihydro-8-oxoguanine. Picher AJ; Blanco L DNA Repair (Amst); 2007 Dec; 6(12):1749-56. PubMed ID: 17686665 [TBL] [Abstract][Full Text] [Related]
10. 5-(Hydroxymethyl)-2-furfural: a selective inhibitor of DNA polymerase lambda and terminal deoxynucleotidyltransferase. Mizushina Y; Yagita E; Kuramochi K; Kuriyama I; Shimazaki N; Koiwai O; Uchiyama Y; Yomezawa Y; Sugawara F; Kobayashi S; Sakaguchi K; Yoshida H Arch Biochem Biophys; 2006 Feb; 446(1):69-76. PubMed ID: 16405901 [TBL] [Abstract][Full Text] [Related]
11. The human DNA polymerase lambda interacts with PCNA through a domain important for DNA primer binding and the interaction is inhibited by p21/WAF1/CIP1. Maga G; Blanca G; Shevelev I; Frouin I; Ramadan K; Spadari S; Villani G; Hübscher U FASEB J; 2004 Nov; 18(14):1743-5. PubMed ID: 15358682 [TBL] [Abstract][Full Text] [Related]
12. Human DNA polymerases lambda and beta show different efficiencies of translesion DNA synthesis past abasic sites and alternative mechanisms for frameshift generation. Blanca G; Villani G; Shevelev I; Ramadan K; Spadari S; Hübscher U; Maga G Biochemistry; 2004 Sep; 43(36):11605-15. PubMed ID: 15350147 [TBL] [Abstract][Full Text] [Related]
13. Properties and functions of Escherichia coli: Pol IV and Pol V. Fuchs RP; Fujii S; Wagner J Adv Protein Chem; 2004; 69():229-64. PubMed ID: 15588845 [TBL] [Abstract][Full Text] [Related]
14. Pre-steady-state kinetic studies of the fidelity and mechanism of polymerization catalyzed by truncated human DNA polymerase lambda. Fiala KA; Abdel-Gawad W; Suo Z Biochemistry; 2004 Jun; 43(21):6751-62. PubMed ID: 15157109 [TBL] [Abstract][Full Text] [Related]
15. Chromium(III) decreases the fidelity of human DNA polymerase beta. Singh J; Snow ET Biochemistry; 1998 Jun; 37(26):9371-8. PubMed ID: 9649318 [TBL] [Abstract][Full Text] [Related]
16. Monoacetylcurcumin: a new inhibitor of eukaryotic DNA polymerase lambda and a new ligand for inhibitor-affinity chromatography. Mizushina Y; Ishidoh T; Takeuchi T; Shimazaki N; Koiwai O; Kuramochi K; Kobayashi S; Sugawara F; Sakaguchi K; Yoshida H Biochem Biophys Res Commun; 2005 Dec; 337(4):1288-95. PubMed ID: 16236265 [TBL] [Abstract][Full Text] [Related]
17. 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Maga G; Villani G; Crespan E; Wimmer U; Ferrari E; Bertocci B; Hübscher U Nature; 2007 May; 447(7144):606-8. PubMed ID: 17507928 [TBL] [Abstract][Full Text] [Related]
18. Expanding the repertoire of DNA polymerase substrates: template-instructed incorporation of non-nucleoside triphosphate analogues by DNA polymerases beta and lambda. Crespan E; Alexandrova L; Khandazhinskaya A; Jasko M; Kukhanova M; Villani G; Hübscher U; Spadari S; Maga G Nucleic Acids Res; 2007; 35(1):45-57. PubMed ID: 17148482 [TBL] [Abstract][Full Text] [Related]
19. DNA elongation by the human DNA polymerase lambda polymerase and terminal transferase activities are differentially coordinated by proliferating cell nuclear antigen and replication protein A. Maga G; Ramadan K; Locatelli GA; Shevelev I; Spadari S; Hübscher U J Biol Chem; 2005 Jan; 280(3):1971-81. PubMed ID: 15537631 [TBL] [Abstract][Full Text] [Related]
20. The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair. Toueille M; El-Andaloussi N; Frouin I; Freire R; Funk D; Shevelev I; Friedrich-Heineken E; Villani G; Hottiger MO; Hübscher U Nucleic Acids Res; 2004; 32(11):3316-24. PubMed ID: 15314187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]