These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 1652285)
1. Erythrocyte aggregation: bridging by macromolecules and electrostatic repulsion by sialic acid. Izumida Y; Seiyama A; Maeda N Biochim Biophys Acta; 1991 Aug; 1067(2):221-6. PubMed ID: 1652285 [TBL] [Abstract][Full Text] [Related]
2. [Roles of plasma proteins and surface negative charge of erythrocytes in erythrocyte aggregation]. Izumida Y Nihon Seirigaku Zasshi; 1991; 53(1):1-12. PubMed ID: 2023137 [TBL] [Abstract][Full Text] [Related]
3. Rheological characteristics of desialylated erythrocytes in relation to fibrinogen-induced aggregation. Maeda N; Imaizumi K; Sekiya M; Shiga T Biochim Biophys Acta; 1984 Sep; 776(1):151-8. PubMed ID: 6477901 [TBL] [Abstract][Full Text] [Related]
4. Influence of sialic acid on erythrocyte aggregation in hypercholesterolemia. Hadengue A; Razavian SM; Del-Pino M; Simon A; Levenson J Thromb Haemost; 1996 Dec; 76(6):944-9. PubMed ID: 8972015 [TBL] [Abstract][Full Text] [Related]
5. Fibrinogen-induced erythrocyte aggregation: erythrocyte-binding site in the fibrinogen molecule. Maeda N; Seike M; Kume S; Takaku T; Shiga T Biochim Biophys Acta; 1987 Nov; 904(1):81-91. PubMed ID: 2959322 [TBL] [Abstract][Full Text] [Related]
6. Opposite effect of albumin on the erythrocyte aggregation induced by immunoglobulin G and fibrinogen. Maeda N; Shiga T Biochim Biophys Acta; 1986 Feb; 855(1):127-35. PubMed ID: 3942735 [TBL] [Abstract][Full Text] [Related]
7. Contribution of glycoproteins to fibrinogen-induced aggregation of erythrocytes. Maeda N; Seike M; Nakajima T; Izumida Y; Sekiya M; Shiga T Biochim Biophys Acta; 1990 Feb; 1022(1):72-8. PubMed ID: 2302404 [TBL] [Abstract][Full Text] [Related]
8. Effect of temperature on the velocity of erythrocyte aggregation. Maeda N; Seike M; Shiga T Biochim Biophys Acta; 1987 Nov; 904(2):319-29. PubMed ID: 3663676 [TBL] [Abstract][Full Text] [Related]
9. Electrostatic repulsion among erythrocytes in tube flow, demonstrated by the thickness of marginal cell-free layer. Suzuki Y; Tateishi N; Maeda N Biorheology; 1998; 35(2):155-70. PubMed ID: 10193487 [TBL] [Abstract][Full Text] [Related]
10. Aggregation and sedimentation of mixtures of erythrocytes with different properties. Suzuki Y; Tateishi N; Cicha I; Maeda N Clin Hemorheol Microcirc; 2001; 25(3-4):105-17. PubMed ID: 11847413 [TBL] [Abstract][Full Text] [Related]
11. Erythrocyte disaggregation shear stress, sialic acid, and cell aging in humans. Hadengue AL; Del-Pino M; Simon A; Levenson J Hypertension; 1998 Aug; 32(2):324-30. PubMed ID: 9719062 [TBL] [Abstract][Full Text] [Related]
12. Inhibition and acceleration of erythrocyte aggregation induced by small macromolecules. Maeda N; Shiga T Biochim Biophys Acta; 1985 Nov; 843(1-2):128-36. PubMed ID: 2415164 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous influence of erythrocyte deformability and macromolecules in the medium on erythrocyte aggregation: a kinetic study by a laser scattering technique. Muralidharan E; Tateishi N; Maeda N Biochim Biophys Acta; 1994 Sep; 1194(2):255-63. PubMed ID: 7522564 [TBL] [Abstract][Full Text] [Related]
14. Effect of pH on the velocity of erythrocyte aggregation. Maeda N; Seike M; Suzuki Y; Shiga T Biorheology; 1988; 25(1-2):25-30. PubMed ID: 3196821 [TBL] [Abstract][Full Text] [Related]
15. Decrease in erythrocyte glycophorin sialic acid content is associated with increased erythrocyte aggregation in human diabetes. Rogers ME; Williams DT; Niththyananthan R; Rampling MW; Heslop KE; Johnston DG Clin Sci (Lond); 1992 Mar; 82(3):309-13. PubMed ID: 1312416 [TBL] [Abstract][Full Text] [Related]
16. [Role of N-acetylneuraminic acid and a negative erythrocyte charge in their aggregation]. Levin GIa; Sheremet'ev IuA Probl Gematol Pereliv Krovi; 1981 Jun; 26(6):6-8. PubMed ID: 6169085 [No Abstract] [Full Text] [Related]
17. Influence of plasma and erythrocyte factors on red blood cell aggregation in survivors of acute myocardial infarction. Vayá A; Falcó C; Réganon E; Vila V; Martínez-Sales V; Corella D; Contreras MT; Aznar J Thromb Haemost; 2004 Feb; 91(2):354-9. PubMed ID: 14961164 [TBL] [Abstract][Full Text] [Related]
19. Sialic acids rather than glycosaminoglycans affect normal and sickle red blood cell rheology by binding to four major sites on fibrinogen. Gondelaud F; Connes P; Nader E; Renoux C; Fort R; Gauthier A; Joly P; Ricard-Blum S Am J Hematol; 2020 Apr; 95(4):E77-E80. PubMed ID: 31903639 [No Abstract] [Full Text] [Related]
20. Spontaneous aggregation of washed human erythrocytes in isotonic media of reduced ionic strength. Conclusions about the spatial arrangement of the N-terminal part of the glycophorins. Lerche D Biorheology; 1982; 19(5):587-98. PubMed ID: 7150713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]