These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 16523284)
1. A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization. Kullin B; Abratt VR; Reid SJ Appl Microbiol Biotechnol; 2006 Oct; 72(5):975-81. PubMed ID: 16523284 [TBL] [Abstract][Full Text] [Related]
2. Sugar transport systems of Bifidobacterium longum NCC2705. Parche S; Amon J; Jankovic I; Rezzonico E; Beleut M; Barutçu H; Schendel I; Eddy MP; Burkovski A; Arigoni F; Titgemeyer F J Mol Microbiol Biotechnol; 2007; 12(1-2):9-19. PubMed ID: 17183207 [TBL] [Abstract][Full Text] [Related]
3. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. Parche S; Beleut M; Rezzonico E; Jacobs D; Arigoni F; Titgemeyer F; Jankovic I J Bacteriol; 2006 Feb; 188(4):1260-5. PubMed ID: 16452407 [TBL] [Abstract][Full Text] [Related]
4. Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose. Trindade MI; Abratt VR; Reid SJ Appl Environ Microbiol; 2003 Jan; 69(1):24-32. PubMed ID: 12513973 [TBL] [Abstract][Full Text] [Related]
5. Coculture of Bifidobacterium longum and Bifidobacterium breve alters their protein expression profiles and enzymatic activities. Ruiz L; Sánchez B; de Los Reyes-Gavilán CG; Gueimonde M; Margolles A Int J Food Microbiol; 2009 Jul; 133(1-2):148-53. PubMed ID: 19500868 [TBL] [Abstract][Full Text] [Related]
6. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose. Liu D; Wang S; Xu B; Guo Y; Zhao J; Liu W; Sun Z; Shao C; Wei X; Jiang Z; Wang X; Liu F; Wang J; Huang L; Hu D; He X; Riedel CU; Yuan J Proteomics; 2011 Jul; 11(13):2628-38. PubMed ID: 21630463 [TBL] [Abstract][Full Text] [Related]
7. [Comparative proteome analysis of Bifidobacterium longum NCC2705 grown on fructose and glucose]. Sun Z; Bo X; He X; Jiang Z; Wang F; Zhao H; Liu D; Yuan J Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1401-6. PubMed ID: 18998542 [TBL] [Abstract][Full Text] [Related]
8. Characterization of fructooligosaccharide-degrading enzymes in human commensal Bifidobacterium longum and Anaerostipes caccae. Tanno H; Fujii T; Ose R; Hirano K; Tochio T; Endo A Biochem Biophys Res Commun; 2019 Oct; 518(2):294-298. PubMed ID: 31420164 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional regulation and characterization of a novel beta-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Ryan SM; Fitzgerald GF; van Sinderen D Appl Environ Microbiol; 2005 Jul; 71(7):3475-82. PubMed ID: 16000751 [TBL] [Abstract][Full Text] [Related]
10. Cloning, sequencing, and expression of cscA invertase from Escherichia coli B-62. Sahin-Tóth M; Lengyel Z; Tsunekawa H Can J Microbiol; 1999 May; 45(5):418-22. PubMed ID: 10446718 [TBL] [Abstract][Full Text] [Related]
11. Identification of the gene for beta-fructofuranosidase of Bifidobacterium lactis DSM10140(T) and characterization of the enzyme expressed in Escherichia coli. Ehrmann MA; Korakli M; Vogel RF Curr Microbiol; 2003 Jun; 46(6):391-7. PubMed ID: 12732943 [TBL] [Abstract][Full Text] [Related]
12. Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies: Bifidobacterium longum subsp. longum subsp. nov., Bifidobacterium longum subsp. infantis comb. nov. and Bifidobacterium longum subsp. suis comb. nov. Mattarelli P; Bonaparte C; Pot B; Biavati B Int J Syst Evol Microbiol; 2008 Apr; 58(Pt 4):767-72. PubMed ID: 18398167 [TBL] [Abstract][Full Text] [Related]
13. Functional analysis of bifidobacterial promoters in Bifidobacterium longum and Escherichia coli using the α-galactosidase gene as a reporter. Sakanaka M; Tamai S; Hirayama Y; Onodera A; Koguchi H; Kano Y; Yokota A; Fukiya S J Biosci Bioeng; 2014 Nov; 118(5):489-95. PubMed ID: 24932968 [TBL] [Abstract][Full Text] [Related]
14. Analysis of host-inducing proteome changes in bifidobacterium longum NCC2705 grown in Vivo. Yuan J; Wang B; Sun Z; Bo X; Yuan X; He X; Zhao H; Du X; Wang F; Jiang Z; Zhang L; Jia L; Wang Y; Wei K; Wang J; Zhang X; Sun Y; Huang L; Zeng M J Proteome Res; 2008 Jan; 7(1):375-85. PubMed ID: 18027903 [TBL] [Abstract][Full Text] [Related]
16. Global transcriptome analysis of the heat shock response of Bifidobacterium longum. Rezzonico E; Lariani S; Barretto C; Cuanoud G; Giliberti G; Delley M; Arigoni F; Pessi G FEMS Microbiol Lett; 2007 Jun; 271(1):136-45. PubMed ID: 17419761 [TBL] [Abstract][Full Text] [Related]
17. Differential analysis of protein expression of Bifidobacterium grown on different carbohydrates. He T; Roelofsen H; Alvarez-Llamas G; de Vries M; Venema K; Welling GW; Vonk RJ J Microbiol Methods; 2007 May; 69(2):364-70. PubMed ID: 17397953 [TBL] [Abstract][Full Text] [Related]
18. Induction of alpha-L-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Gueimonde M; Noriega L; Margolles A; de los Reyes-Gavilán CG Arch Microbiol; 2007 Feb; 187(2):145-53. PubMed ID: 17031615 [TBL] [Abstract][Full Text] [Related]
19. ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum. Engels V; Georgi T; Wendisch VF FEMS Microbiol Lett; 2008 Dec; 289(1):80-9. PubMed ID: 19054097 [TBL] [Abstract][Full Text] [Related]
20. Expression and secretion of Bifidobacterium adolescentis amylase by Bifidobacterium longum. Rhim SL; Park MS; Ji GE Biotechnol Lett; 2006 Feb; 28(3):163-8. PubMed ID: 16489493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]