These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16523770)

  • 1. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula.
    Shen F; Wang A
    Appl Opt; 2006 Feb; 45(6):1102-10. PubMed ID: 16523770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verification and comparison of a fast fourier transform-based full diffraction method for tilted and offset planes.
    Delen N; Hooker B
    Appl Opt; 2001 Jul; 40(21):3525-31. PubMed ID: 18360379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.
    Xiao Y; Tang X; Qin Y; Peng H; Wang W; Zhong L
    J Opt Soc Am A Opt Image Sci Vis; 2016 Oct; 33(10):2027-2033. PubMed ID: 27828106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast method for computing the Fourier integral transform via Simpson's numerical integration.
    Simonen P; Olkkonen H
    J Biomed Eng; 1985 Oct; 7(4):337-40. PubMed ID: 4057997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible numerical calculation method of angular spectrum based on matrix product.
    Zhao W; Wei C; Yuan C; Chang C; Ma J; Zhu R
    Opt Lett; 2020 Nov; 45(21):5937-5940. PubMed ID: 33137045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast computation algorithm for the Rayleigh-Sommerfeld diffraction formula using a type of scaled convolution.
    Nascov V; Logofătu PC
    Appl Opt; 2009 Aug; 48(22):4310-9. PubMed ID: 19649033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated near-field algorithm of sparse apertures by non-uniform fast Fourier transform.
    Wang S; Li Z; Wu J; Wang Z
    Opt Express; 2019 Jul; 27(14):19102-19118. PubMed ID: 31503674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-approximated Rayleigh-Sommerfeld diffraction integral: advantages and disadvantages in the propagation of complex wave fields.
    Buitrago-Duque C; Garcia-Sucerquia J
    Appl Opt; 2019 Dec; 58(34):G11-G18. PubMed ID: 31873480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of the Rayleigh-Sommerfeld diffraction integral by exact integration of the fast oscillating factor.
    Veerman JA; Rusch JJ; Urbach HP
    J Opt Soc Am A Opt Image Sci Vis; 2005 Apr; 22(4):636-46. PubMed ID: 15839270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of GHz ultrasonic wave piezoelectric instrumentation for Fourier transform computation.
    Yang Z; Tan XHM; Bui VP; Png CE
    Sci Rep; 2023 Sep; 13(1):15052. PubMed ID: 37699994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technique for enhancing the accuracy of the Rayleigh-Sommerfeld convolutional diffraction through the utilization of independent spatial sampling.
    Zhao W; Lu J; Ma J; Yuan C; Chang C; Zhu R
    Opt Lett; 2024 Mar; 49(5):1385-1388. PubMed ID: 38427019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of numerical diffraction calculation methods: from the perspective of phase space optics and the sampling theorem.
    Zhang W; Zhang H; Sheppard CJR; Jin G
    J Opt Soc Am A Opt Image Sci Vis; 2020 Nov; 37(11):1748-1766. PubMed ID: 33175751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction algorithm suitable for both near and far field with shifted destination window and oblique illumination.
    Guo CS; Xie YY; Sha B
    Opt Lett; 2014 Apr; 39(8):2338-41. PubMed ID: 24978987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonuniform sampled scalar diffraction calculation using nonuniform fast Fourier transform.
    Shimobaba T; Kakue T; Oikawa M; Okada N; Endo Y; Hirayama R; Ito T
    Opt Lett; 2013 Dec; 38(23):5130-3. PubMed ID: 24281527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-window angular spectrum method for diffraction propagation in far and near field.
    Yu X; Xiahui T; Xiong QY; Hao P; Wei W
    Opt Lett; 2012 Dec; 37(23):4943-5. PubMed ID: 23202098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical transfer function calculation by Winograd's fast Fourier transform.
    Heshmaty-Manesh D; Tarn SC
    Appl Opt; 1982 Sep; 21(18):3273-7. PubMed ID: 20396222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computationally efficient scalar nonparaxial modeling of optical wave propagation in the far-field.
    Nguyen GN; Heggarty K; Gérard P; Serio B; Meyrueis P
    Appl Opt; 2014 Apr; 53(10):2196-205. PubMed ID: 24787181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and accurate propagation of coherent light.
    Lewis RD; Beylkin G; Monzón L
    Proc Math Phys Eng Sci; 2013 Nov; 469(2159):20130323. PubMed ID: 24204184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast numerical algorithm for the linear canonical transform.
    Hennelly BM; Sheridan JT
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):928-37. PubMed ID: 15898553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm.
    García J; Mas D; Dorsch RG
    Appl Opt; 1996 Dec; 35(35):7013-8. PubMed ID: 21151302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.