These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 16523873)
1. [Molecular mechanism for biological transport in the kidney: K+ channels]. Kawahara K; Yasuoka Y; Suzuki T Nihon Rinsho; 2006 Feb; 64 Suppl 2():123-8. PubMed ID: 16523873 [No Abstract] [Full Text] [Related]
2. New aspects of renal potassium transport. Giebisch G; Hebert SC; Wang WH Pflugers Arch; 2003 Jun; 446(3):289-97. PubMed ID: 12684792 [TBL] [Abstract][Full Text] [Related]
3. [Molecular mechanism in biological transport in the kidney: Na+/K(+)-ATPase]. Adachi M; Tomita K Nihon Rinsho; 2006 Feb; 64 Suppl 2():158-63. PubMed ID: 16523880 [No Abstract] [Full Text] [Related]
9. [Molecular mechanisms regulating water and solutes transport in the kidney]. Imai M Nihon Rinsho; 2006 Feb; 64 Suppl 2():23-30. PubMed ID: 16523854 [No Abstract] [Full Text] [Related]
10. [Molecular mechanism of biological transport in the kidney: Na+/Cl- cotransporter protein (Na(+)-k(+)-2Cl-, Na(+)-Cl- cotransporter)]. Muto S; Kusano E Nihon Rinsho; 2006 Feb; 64 Suppl 2():134-40. PubMed ID: 16523875 [No Abstract] [Full Text] [Related]
11. ATP-sensitive K+ channels in renal mitochondria. Cancherini DV; Trabuco LG; Rebouças NA; Kowaltowski AJ Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1291-6. PubMed ID: 12952853 [TBL] [Abstract][Full Text] [Related]
12. Effects of aldosterone on renal handling of sodium, potassium and hydrogen ions. Paillard M Adv Nephrol Necker Hosp; 1977; 7():83-104. PubMed ID: 96680 [No Abstract] [Full Text] [Related]
13. Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. Fakler B; Schultz JH; Yang J; Schulte U; Brandle U; Zenner HP; Jan LY; Ruppersberg JP EMBO J; 1996 Aug; 15(16):4093-9. PubMed ID: 8861938 [TBL] [Abstract][Full Text] [Related]
15. Some reflections on the mechanism of renal tubular potassium transport. Giebisch G Yale J Biol Med; 1975 Sep; 48(4):315-36. PubMed ID: 1202761 [TBL] [Abstract][Full Text] [Related]
16. [Pathophysiology of hypertension. c. Electron transport. 1) Biological transport in the kidney]. Takahashi S; Iwabuchi F; Shimomura S; Kawamura H; Hatano M Nihon Rinsho; 1984 Feb; 42(2):325-31. PubMed ID: 6371313 [No Abstract] [Full Text] [Related]
17. [Research progress in two-pore-domain K+ channels]. Zhang W; Wang XL Sheng Li Ke Xue Jin Zhan; 2003 Jan; 34(1):49-52. PubMed ID: 12778810 [No Abstract] [Full Text] [Related]
18. [Role of K+ transport proteins in cell growth and salt sensitivity in plants]. Sato Y; Mizutani A; Uozumi N Tanpakushitsu Kakusan Koso; 2003 Nov; 48(15 Suppl):2052-60. PubMed ID: 14631782 [No Abstract] [Full Text] [Related]
19. External pore collapse as an inactivation mechanism for Kv4.3 K+ channels. Eghbali M; Olcese R; Zarei MM; Toro L; Stefani E J Membr Biol; 2002 Jul; 188(1):73-86. PubMed ID: 12172648 [TBL] [Abstract][Full Text] [Related]
20. Renal potassium transport: mechanisms and regulation. Giebisch G Am J Physiol; 1998 May; 274(5):F817-33. PubMed ID: 9612319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]