BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 16524429)

  • 1. Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo.
    Aspengren S; Hedberg D; Wallin M
    Pigment Cell Res; 2006 Apr; 19(2):136-45. PubMed ID: 16524429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo.
    Rubin KA; Starodubov SM; Onishchenko GE
    Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):1099-117. PubMed ID: 10644015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic detection of melanosome transport in Xenopus laevis melanophores.
    Frost R; Norström E; Bodin L; Langhammer C; Sturve J; Wallin M; Svedhem S
    Anal Biochem; 2013 Apr; 435(1):10-8. PubMed ID: 23262280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Height changes associated with pigment aggregation in Xenopus laevis melanophores.
    Immerstrand C; Nilsson HM; Lindroth M; Sundqvist T; Magnusson KE; Peterson KH
    Biosci Rep; 2004 Jun; 24(3):203-14. PubMed ID: 16209129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dynamics of the redistribution of pigment granules in the dermal melanophores of anuran amphibians. 1. Dispersion].
    Nikeriasova EN; Golichenkov VA; Dorfman IaG
    Ontogenez; 1984; 15(6):616-25. PubMed ID: 6521976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual leucophore-like cells specifically appear in the lineage of melanophores in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Pigment Cell Res; 2004 Jun; 17(3):252-61. PubMed ID: 15140070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into melanosome transport in vertebrate pigment cells.
    Aspengren S; Hedberg D; Sköld HN; Wallin M
    Int Rev Cell Mol Biol; 2009; 272():245-302. PubMed ID: 19121820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. α-Melanocyte stimulating hormone (MSH) and prostaglandin E2 (PGE2) drive melanosome transfer by promoting filopodia delivery and shedding spheroid granules: Evidences from atomic force microscopy observation.
    Ma HJ; Ma HY; Yang Y; Li PC; Zi SX; Jia CY; Chen R
    J Dermatol Sci; 2014 Dec; 76(3):222-30. PubMed ID: 25445925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores.
    Sugden D; Rowe SJ
    J Cell Biol; 1992 Dec; 119(6):1515-21. PubMed ID: 1334961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores.
    Aspengren S; Wallin M
    Pigment Cell Res; 2004 Jun; 17(3):295-301. PubMed ID: 15140076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of alpha-melanocyte-stimulating hormone and ultraviolet radiation on the transfer of melanosomes to keratinocytes.
    Virador VM; Muller J; Wu X; Abdel-Malek ZA; Yu ZX; Ferrans VJ; Kobayashi N; Wakamatsu K; Ito S; Hammer JA; Hearing VJ
    FASEB J; 2002 Jan; 16(1):105-7. PubMed ID: 11729101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved.
    Isoldi MC; Provencio I; Castrucci AM
    Gen Comp Endocrinol; 2010 Jan; 165(1):104-10. PubMed ID: 19539625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of single melanophores to extracellular and intracellular iontophoretic injection of melanocyte-stimulating hormone.
    Horowitz JM; Mikuckis GM; Longshore MA
    Endocrinology; 1980 Mar; 106(3):770-7. PubMed ID: 6965477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Panax ginseng induces anterograde transport of pigment organelles in Xenopus melanophores.
    Eriksson TL; Svensson SP; Lundström I; Persson K; Andersson TP; Andersson RG
    J Ethnopharmacol; 2008 Sep; 119(1):17-23. PubMed ID: 18639398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2015 Sep; 361(3):733-44. PubMed ID: 25715760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frog melanophores cultured on fluorescent microbeads: biomimic-based biosensing.
    Andersson TP; Filippini D; Suska A; Johansson TL; Svensson SP; Lundström I
    Biosens Bioelectron; 2005 Jul; 21(1):111-20. PubMed ID: 15967358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2010 Oct; 342(1):53-66. PubMed ID: 20859642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic properties of intermediate filaments during organelle transport.
    Chang L; Barlan K; Chou YH; Grin B; Lakonishok M; Serpinskaya AS; Shumaker DK; Herrmann H; Gelfand VI; Goldman RD
    J Cell Sci; 2009 Aug; 122(Pt 16):2914-23. PubMed ID: 19638410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative ultrastructural and physiological study on melanophores of wild-type and periodic albino mutants of Xenopus laevis.
    Seldenrijk R; Huijsman KG; Heussen AM; van de Veerdonk FC
    Cell Tissue Res; 1982; 222(1):1-9. PubMed ID: 6800656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.