BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16524640)

  • 1. Identification of a reactive degradation zone at a landfill leachate plume fringe using high resolution sampling and incubation techniques.
    Tuxen N; Albrechtsen HJ; Bjerg PL
    J Contam Hydrol; 2006 May; 85(3-4):179-94. PubMed ID: 16524640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation.
    van Breukelen BM; Griffioen J
    J Contam Hydrol; 2004 Sep; 73(1-4):181-205. PubMed ID: 15336794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume.
    Lorah MM; Cozzarelli IM; Böhlke JK
    J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark).
    Baun A; Reitzel LA; Ledin A; Christensen TH; Bjerg PL
    J Contam Hydrol; 2003 Sep; 65(3-4):269-91. PubMed ID: 12935953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogeochemistry and isotope geochemistry of a landfill leachate plume.
    van Breukelen BM; Röling WF; Groen J; Griffioen J; van Verseveld HW
    J Contam Hydrol; 2003 Sep; 65(3-4):245-68. PubMed ID: 12935952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma.
    Cozzarelli IM; Böhlke JK; Masoner J; Breit GN; Lorah MM; Tuttle ML; Jaeschke JB
    Ground Water; 2011; 49(5):663-87. PubMed ID: 21314684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of multi-channel piezometry and electrical tomography to better define chemical heterogeneity in a landfill leachate plume within a sand aquifer.
    Acworth RI; Jorstad LB
    J Contam Hydrol; 2006 Feb; 83(3-4):200-20. PubMed ID: 16412530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer.
    Thornton SF; Quigley S; Spence MJ; Banwart SA; Bottrell S; Lerner DN
    J Contam Hydrol; 2001 Dec; 53(3-4):233-67. PubMed ID: 11820472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA; Cozzarelli IM; Christenson SC
    J Contam Hydrol; 2006 Aug; 86(3-4):239-61. PubMed ID: 16677736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fringe-controlled natural attenuation of phenoxy acids in a landfill plume: integration of field-scale processes by reactive transport modeling.
    Prommer H; Tuxen N; Bjerg PL
    Environ Sci Technol; 2006 Aug; 40(15):4732-8. PubMed ID: 16913131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen-enhanced biodegradation of phenoxy acids in ground water at contaminated sites.
    Tuxen N; Reitzel LA; Albrechtsen HJ; Bjerg PL
    Ground Water; 2006; 44(2):256-65. PubMed ID: 16556207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Distribution of pollutants and redox sensitive substrates in landfill leachate pollution plume].
    Dong J; Zhao YS; Zhang WH
    Huan Jing Ke Xue; 2008 Sep; 29(9):2613-7. PubMed ID: 19068652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany.
    Richter D; Massmann G; Taute T; Duennbier U
    J Contam Hydrol; 2009 May; 106(3-4):183-94. PubMed ID: 19371963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can degradation products be used as documentation for natural attenuation of phenoxy acids in groundwater?
    Reitzel LA; Tuxen N; Ledin A; Bjerg PL
    Environ Sci Technol; 2004 Jan; 38(2):457-67. PubMed ID: 14750720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sediment redox tracers in Strait of Georgia sediments--can they inform us of the loadings of organic carbon from municipal wastewater?
    Macdonald RW; Johannessen SC; Gobeil C; Wright C; Burd B; van Roodselaar A; Pedersen TF
    Mar Environ Res; 2008 Dec; 66 Suppl():S87-100. PubMed ID: 18804858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of solid waste disposal on nutrient dynamics in a sandy catchment.
    Canton M; Anschutz P; Naudet V; Molnar N; Mouret A; Franceschi M; Naessens F; Poirier D
    J Contam Hydrol; 2010 Jul; 116(1-4):1-15. PubMed ID: 20658756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors controlling BTEX and chlorinated solvents plume length under natural attenuation conditions.
    Atteia O; Guillot C
    J Contam Hydrol; 2007 Feb; 90(1-2):81-104. PubMed ID: 17081653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal and spatial variation of perchlorate in streambed sediments: results from in-situ dialysis samplers.
    Tan K; Anderson TA; Jackson WA
    Environ Pollut; 2005 Jul; 136(2):283-91. PubMed ID: 15840536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of groundwater contamination by landfill leachate: a case in México.
    Reyes-López JA; Ramírez-Hernández J; Lázaro-Mancilla O; Carreón-Diazconti C; Garrido MM
    Waste Manag; 2008; 28 Suppl 1():S33-9. PubMed ID: 18595685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes.
    Bilgili MS; Demir A; Ozkaya B
    J Hazard Mater; 2007 May; 143(1-2):177-83. PubMed ID: 17023112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.