These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16524716)

  • 1. In quest of an empirical potential for protein structure prediction.
    Skolnick J
    Curr Opin Struct Biol; 2006 Apr; 16(2):166-71. PubMed ID: 16524716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying native-like protein structures using physics-based potentials.
    Dominy BN; Brooks CL
    J Comput Chem; 2002 Jan; 23(1):147-60. PubMed ID: 11913380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of protein mutant stability: analysis and optimization of statistical potentials and structural features reveal insights into prediction model development.
    Parthiban V; Gromiha MM; Abhinandan M; Schomburg D
    BMC Struct Biol; 2007 Aug; 7():54. PubMed ID: 17705837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of novel statistical potentials for protein fold recognition.
    Buchete NV; Straub JE; Thirumalai D
    Curr Opin Struct Biol; 2004 Apr; 14(2):225-32. PubMed ID: 15093838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of protein-specific pair potentials based on weak sequence fragment similarity.
    Skolnick J; Kolinski A; Ortiz A
    Proteins; 2000 Jan; 38(1):3-16. PubMed ID: 10651034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre.
    Bennett-Lovsey RM; Herbert AD; Sternberg MJ; Kelley LA
    Proteins; 2008 Feb; 70(3):611-25. PubMed ID: 17876813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can a physics-based, all-atom potential find a protein's native structure among misfolded structures? I. Large scale AMBER benchmarking.
    Wroblewska L; Skolnick J
    J Comput Chem; 2007 Sep; 28(12):2059-66. PubMed ID: 17407093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential for assessing quality of protein structure based on contact number prediction.
    Ishida T; Nakamura S; Shimizu K
    Proteins; 2006 Sep; 64(4):940-7. PubMed ID: 16788993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein refolding in silico with atom-based statistical potentials and conformational search using a simple genetic algorithm.
    Fang Q; Shortle D
    J Mol Biol; 2006 Jun; 359(5):1456-67. PubMed ID: 16678202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking of TASSER in the ab initio limit.
    Borreguero JM; Skolnick J
    Proteins; 2007 Jul; 68(1):48-56. PubMed ID: 17444524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of near-native protein structures from misfolded models by empirical free energy functions.
    Gatchell DW; Dennis S; Vajda S
    Proteins; 2000 Dec; 41(4):518-34. PubMed ID: 11056039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic pairwise alignments and scoring methods for comparative protein structure modeling.
    Marko AC; Stafford K; Wymore T
    J Chem Inf Model; 2007; 47(3):1263-70. PubMed ID: 17391002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating quality of template-based protein models by alignment stability.
    Chen H; Kihara D
    Proteins; 2008 May; 71(3):1255-74. PubMed ID: 18041762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis and prediction of protein mutant stability using distance and torsion potentials: role of secondary structure and solvent accessibility.
    Parthiban V; Gromiha MM; Hoppe C; Schomburg D
    Proteins; 2007 Jan; 66(1):41-52. PubMed ID: 17068801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TOUCHSTONE: a unified approach to protein structure prediction.
    Skolnick J; Zhang Y; Arakaki AK; Kolinski A; Boniecki M; Szilágyi A; Kihara D
    Proteins; 2003; 53 Suppl 6():469-79. PubMed ID: 14579335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complex folding pathways of protein A suggest a multiple-funnelled energy landscape.
    St-Pierre JF; Mousseau N; Derreumaux P
    J Chem Phys; 2008 Jan; 128(4):045101. PubMed ID: 18248008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliable protein structure refinement using a physical energy function.
    Lin MS; Head-Gordon T
    J Comput Chem; 2011 Mar; 32(4):709-17. PubMed ID: 20925085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pair-to-pair amino acids substitution matrix and its applications for protein structure prediction.
    Eyal E; Frenkel-Morgenstern M; Sobolev V; Pietrokovski S
    Proteins; 2007 Apr; 67(1):142-53. PubMed ID: 17243158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural refinement of protein segments containing secondary structure elements: Local sampling, knowledge-based potentials, and clustering.
    Zhu J; Xie L; Honig B
    Proteins; 2006 Nov; 65(2):463-79. PubMed ID: 16927337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.