These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16524744)

  • 1. Differential changes in myoelectric characteristics of slow and fast fatigable frog muscle fibres during long-lasting activity.
    Vydevska-Chichova M; Mileva K; Radicheva N
    J Electromyogr Kinesiol; 2007 Apr; 17(2):131-41. PubMed ID: 16524744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.
    Vydevska-Chichova M; Mileva K; Todorova R; Dimitrova M; Radicheva N
    Gen Physiol Biophys; 2005 Dec; 24(4):381-96. PubMed ID: 16474184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern of continuous muscle fibre activity depending on fibre stretch and stimulation frequency.
    Radicheva N; Mileva K; Vydevska M
    J Muscle Res Cell Motil; 1998 Jan; 19(1):87-94. PubMed ID: 9477380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue-induced changes in muscle fiber action potentials estimated by wavelet analysis.
    Vukova T; Vydevska-Chichova M; Radicheva N
    J Electromyogr Kinesiol; 2008 Jun; 18(3):397-409. PubMed ID: 17287133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three methods for estimation of changes in frequency characteristics of potentials elicited by long-lasting (fatiguing) activity of isolated muscle fibres.
    Vukova TI; Dimitrov V; Radicheva N
    Gen Physiol Biophys; 2010 Sep; 29(3):243-54. PubMed ID: 20817948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave properties of action potentials from fast and slow motor units of rats.
    Wakeling JM; Syme DA
    Muscle Nerve; 2002 Nov; 26(5):659-68. PubMed ID: 12402288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rate of changes in tension within fused tetani of single motor units in rat medial gastrocnemius muscle.
    Celichowski J; Bichler E
    J Physiol Pharmacol; 1998 Dec; 49(4):597-605. PubMed ID: 10069700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in neuromuscular function after training by functional electrical stimulation.
    Marqueste T; Hug F; Decherchi P; Jammes Y
    Muscle Nerve; 2003 Aug; 28(2):181-8. PubMed ID: 12872322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the contractile properties of motor units in the rat medial gastrocnemius muscle after one month of treadmill training.
    Pogrzebna M; Celichowski J
    Acta Physiol (Oxf); 2008 Aug; 193(4):367-79. PubMed ID: 18298635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-sigmoid model for fitting fatigue profiles in mouse fast- and slow-twitch muscle.
    Cairns SP; Robinson DM; Loiselle DS
    Exp Physiol; 2008 Jul; 93(7):851-62. PubMed ID: 18344260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-lasting (fatiguing) activity of isolated muscle fibres influenced by microwave electromagnetic field.
    Radicheva N; Mileva K; Georgieva B; Kristev I
    Acta Physiol Pharmacol Bulg; 2001; 26(1-2):37-40. PubMed ID: 11693398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term electrical stimulation alters tongue muscle fibre type composition.
    Pae EK; Hyatt JP; Wu J; Chien P
    Arch Oral Biol; 2007 Jun; 52(6):544-51. PubMed ID: 17239813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.
    Mutungi G; Ranatunga KW
    J Muscle Res Cell Motil; 2001; 22(2):175-84. PubMed ID: 11519740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation analysis of interference EMG during fatiguing voluntary contractions. Part I: What do the intramuscular spike amplitude-frequency histograms reflect?
    Dimitrov GV; Arabadzhiev TI; Hogrel JY; Dimitrova NA
    J Electromyogr Kinesiol; 2008 Feb; 18(1):26-34. PubMed ID: 16963279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in contractile properties of motor units of the rat medial gastrocnemius muscle after spinal cord transection.
    Celichowski J; Mrówczyński W; Krutki P; Górska T; Majczyński H; Sławińska U
    Exp Physiol; 2006 Sep; 91(5):887-95. PubMed ID: 16728457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-aided analysis of muscle fibre conduction velocity in neuromuscular diseases.
    Vogt TH; Fritz A
    Neurol Sci; 2006 Apr; 27(1):51-7. PubMed ID: 16688600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the interplay between groups of fast and slow muscle fibers of the tibialis anterior and gastrocnemius muscle while running.
    Von Tscharner V; Goepfert B
    J Electromyogr Kinesiol; 2006 Apr; 16(2):188-97. PubMed ID: 16139523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Qualitatively different cross-bridge attachments in fast and slow muscle fiber types.
    Galler S; Andruchov O; Stephenson GM; Stephenson DG
    Biochem Biophys Res Commun; 2009 Jul; 385(1):44-8. PubMed ID: 19427830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecies differences in the force-frequency relationship of the medial gastrocnemius motor units.
    Mrówczyński W; Celichowski J; Krutki P
    J Physiol Pharmacol; 2006 Sep; 57(3):491-501. PubMed ID: 17033100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.