These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Huang X; Li L; Qian H; Dong C; Ren J Angew Chem Int Ed Engl; 2006 Aug; 45(31):5140-3. PubMed ID: 16826612 [No Abstract] [Full Text] [Related]
5. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Shi L; Rosenzweig N; Rosenzweig Z Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141 [TBL] [Abstract][Full Text] [Related]
6. Bioluminescence resonance energy transfer coupled near-infrared quantum dots using GST-tagged luciferase for in vivo imaging. Hasegawa M; Tsukasaki Y; Ohyanagi T; Jin T Chem Commun (Camb); 2013 Jan; 49(3):228-30. PubMed ID: 23125985 [TBL] [Abstract][Full Text] [Related]
7. Luminescent chemosensors based on semiconductor quantum dots. Raymo FM; Yildiz I Phys Chem Chem Phys; 2007 May; 9(17):2036-43. PubMed ID: 17464385 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips. Eckel R; Walhorn V; Pelargus C; Martini J; Enderlein J; Nann T; Anselmetti D; Ros R Small; 2007 Jan; 3(1):44-9. PubMed ID: 17294466 [No Abstract] [Full Text] [Related]
9. Ca(2+)-triggered coelenterazine-binding protein from Renilla as an enzyme-dependent label for binding assay. Krasitskaya VV; Korneeva SI; Kudryavtsev AN; Markova SV; Stepanyuk GA; Frank LA Anal Bioanal Chem; 2011 Nov; 401(8):2573-9. PubMed ID: 21892640 [TBL] [Abstract][Full Text] [Related]
12. Fiat Luc: Bioluminescence Imaging Reveals In Vivo Viral Replication Dynamics. Mehle A PLoS Pathog; 2015 Sep; 11(9):e1005081. PubMed ID: 26356297 [No Abstract] [Full Text] [Related]
13. Structure based mechanism of the Ca(2+)-induced release of coelenterazine from the Renilla binding protein. Stepanyuk GA; Liu ZJ; Vysotski ES; Lee J; Rose JP; Wang BC Proteins; 2009 Feb; 74(3):583-93. PubMed ID: 18655070 [TBL] [Abstract][Full Text] [Related]
14. Identification of Factors Complicating Bioluminescence Imaging. Yeh HW; Wu T; Chen M; Ai HW Biochemistry; 2019 Mar; 58(12):1689-1697. PubMed ID: 30810040 [TBL] [Abstract][Full Text] [Related]
15. HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. Zhang Y; So MK; Loening AM; Yao H; Gambhir SS; Rao J Angew Chem Int Ed Engl; 2006 Jul; 45(30):4936-40. PubMed ID: 16807952 [No Abstract] [Full Text] [Related]
17. Optimization of enzyme-substrate pairing for bioluminescence imaging of gene transfer using Renilla and Gaussia luciferases. Kimura T; Hiraoka K; Kasahara N; Logg CR J Gene Med; 2010 Jun; 12(6):528-37. PubMed ID: 20527045 [TBL] [Abstract][Full Text] [Related]
18. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Yao H; Zhang Y; Xiao F; Xia Z; Rao J Angew Chem Int Ed Engl; 2007; 46(23):4346-9. PubMed ID: 17465433 [No Abstract] [Full Text] [Related]
19. Blue fluorescent protein from the calcium-sensitive photoprotein aequorin: catalytic properties for the oxidation of coelenterazine as an oxygenase. Inouye S; Sasaki S FEBS Lett; 2006 Apr; 580(8):1977-82. PubMed ID: 16545379 [TBL] [Abstract][Full Text] [Related]
20. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra. Surrente A; Gallo P; Felici M; Dwir B; Rudra A; Kapon E Nanotechnology; 2009 Oct; 20(41):415205. PubMed ID: 19762950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]