These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 16525695)
1. Computational vision systems for the detection of malignant melanoma. Maglogiannis I; Kosmopoulos DI Oncol Rep; 2006; 15(4):1027-1032. PubMed ID: 16525695 [TBL] [Abstract][Full Text] [Related]
2. Overview of advanced computer vision systems for skin lesions characterization. Maglogiannis I; Doukas CN IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):721-33. PubMed ID: 19304487 [TBL] [Abstract][Full Text] [Related]
3. Characterization of digital medical images utilizing support vector machines. Maglogiannis IG; Zafiropoulos EP BMC Med Inform Decis Mak; 2004 Mar; 4():4. PubMed ID: 15113418 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided epiluminescence microscopy of pigmented skin lesions: the value of clinical data for the classification process. Binder M; Kittler H; Dreiseitl S; Ganster H; Wolff K; Pehamberger H Melanoma Res; 2000 Dec; 10(6):556-61. PubMed ID: 11198477 [TBL] [Abstract][Full Text] [Related]
5. High-resolution ultrasound reflex transmission imaging and digital photography: potential tools for the quantitative assessment of pigmented lesions. Rallan D; Dickson M; Bush NL; Harland CC; Mortimer P; Bamber JC Skin Res Technol; 2006 Feb; 12(1):50-9. PubMed ID: 16420539 [TBL] [Abstract][Full Text] [Related]
6. Adaptable pattern recognition system for discriminating Melanocytic Nevi from Malignant Melanomas using plain photography images from different image databases. Kostopoulos SA; Asvestas PA; Kalatzis IK; Sakellaropoulos GC; Sakkis TH; Cavouras DA; Glotsos DT Int J Med Inform; 2017 Sep; 105():1-10. PubMed ID: 28750902 [TBL] [Abstract][Full Text] [Related]
7. An integrated computer supported acquisition, handling, and characterization system for pigmented skin lesions in dermatological images. Maglogiannis I; Pavlopoulos S; Koutsouris D IEEE Trans Inf Technol Biomed; 2005 Mar; 9(1):86-98. PubMed ID: 15787011 [TBL] [Abstract][Full Text] [Related]
8. Neural network diagnosis of malignant melanoma from color images. Ercal F; Chawla A; Stoecker WV; Lee HC; Moss RH IEEE Trans Biomed Eng; 1994 Sep; 41(9):837-45. PubMed ID: 7959811 [TBL] [Abstract][Full Text] [Related]
9. Texture based skin lesion abruptness quantification to detect malignancy. Erol R; Bayraktar M; Kockara S; Kaya S; Halic T BMC Bioinformatics; 2017 Dec; 18(Suppl 14):484. PubMed ID: 29297290 [TBL] [Abstract][Full Text] [Related]
10. Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology? Aractingi S; Pellacani G Eur J Dermatol; 2019 Apr; 29(S1):4-7. PubMed ID: 31017580 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of different image acquisition techniques for a computer vision system in the diagnosis of malignant melanoma. Schindewolf T; Schiffner R; Stolz W; Albert R; Abmayr W; Harms H J Am Acad Dermatol; 1994 Jul; 31(1):33-41. PubMed ID: 8021369 [TBL] [Abstract][Full Text] [Related]
12. Classification of dermatological images using advanced clustering techniques. Tasoulis SK; Doukas CN; Maglogiannis I; Plagianakos VP Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6721-4. PubMed ID: 21096085 [TBL] [Abstract][Full Text] [Related]
13. Detecting melanoma in dermoscopy images using scale adaptive local binary patterns. Riaz F; Hassan A; Javed MY; Tavares Coimbra M Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6758-61. PubMed ID: 25571547 [TBL] [Abstract][Full Text] [Related]
14. A systematic heuristic approach for feature selection for melanoma discrimination using clinical images. Chang Y; Stanley RJ; Moss RH; Van Stoecker W Skin Res Technol; 2005 Aug; 11(3):165-78. PubMed ID: 15998327 [TBL] [Abstract][Full Text] [Related]
15. Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network. Binder M; Kittler H; Seeber A; Steiner A; Pehamberger H; Wolff K Melanoma Res; 1998 Jun; 8(3):261-6. PubMed ID: 9664148 [TBL] [Abstract][Full Text] [Related]
16. Extraction of specific parameters for skin tumour classification. Messadi M; Bessaid A; Taleb-Ahmed A J Med Eng Technol; 2009; 33(4):288-95. PubMed ID: 19384704 [TBL] [Abstract][Full Text] [Related]
17. Extraction of skin lesion texture features based on independent component analysis. Tabatabaie K; Esteki A; Toossi P Skin Res Technol; 2009 Nov; 15(4):433-9. PubMed ID: 19832954 [TBL] [Abstract][Full Text] [Related]
18. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms. Premaladha J; Ravichandran KS J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778 [TBL] [Abstract][Full Text] [Related]
19. A cascade classifier for diagnosis of melanoma in clinical images. Sabouri P; GholamHosseini H; Larsson T; Collins J Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6748-51. PubMed ID: 25571545 [TBL] [Abstract][Full Text] [Related]
20. An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Nasir M; Attique Khan M; Sharif M; Lali IU; Saba T; Iqbal T Microsc Res Tech; 2018 Jun; 81(6):528-543. PubMed ID: 29464868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]