These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 16525852)
1. A neuro-mechanical model for interpersonal coordination. de Rugy A; Salesse R; Oullier O; Temprado JJ Biol Cybern; 2006 Jun; 94(6):427-43. PubMed ID: 16525852 [TBL] [Abstract][Full Text] [Related]
2. Movement interference during action observation as emergent coordination. Richardson MJ; Campbell WL; Schmidt RC Neurosci Lett; 2009 Jan; 449(2):117-22. PubMed ID: 18996439 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking. Kubo M; Wagenaar RC; Saltzman E; Holt KG Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side. van Ulzen NR; Lamoth CJ; Daffertshofer A; Semin GR; Beek PJ Neurosci Lett; 2008 Feb; 432(2):88-93. PubMed ID: 18242846 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of multifrequency coordination using parametric driving: theory and experiment. Assisi CG; Jirsa VK; Kelso JA Biol Cybern; 2005 Jul; 93(1):6-21. PubMed ID: 15926066 [TBL] [Abstract][Full Text] [Related]
7. Sensory feedback in a half-center oscillator model. Simoni MF; DeWeerth SP IEEE Trans Biomed Eng; 2007 Feb; 54(2):193-204. PubMed ID: 17278576 [TBL] [Abstract][Full Text] [Related]
8. Feedback control of the limbs position during voluntary rhythmic oscillation. Esposti R; Cavallari P; Baldissera F Biol Cybern; 2007 Aug; 97(2):123-36. PubMed ID: 17534650 [TBL] [Abstract][Full Text] [Related]
9. Coordination of complex bimanual multijoint movements under increasing cycling frequencies: the prevalence of mirror-image and translational symmetry. Li Y; Levin O; Forner-Cordero A; Ronsse R; Swinnen SP Acta Psychol (Amst); 2009 Mar; 130(3):183-95. PubMed ID: 19166988 [TBL] [Abstract][Full Text] [Related]
10. Diffusive, Synaptic, and Synergetic Coupling: An Evaluation Through In-Phase and Antiphase Rhythmic Movements. Sternad D; Amazeen EL; Turvey MT J Mot Behav; 1996 Sep; 28(3):255-269. PubMed ID: 12529208 [TBL] [Abstract][Full Text] [Related]
11. Interlimb coupling strength scales with movement amplitude. Peper CL; de Boer BJ; de Poel HJ; Beek PJ Neurosci Lett; 2008 May; 437(1):10-4. PubMed ID: 18423866 [TBL] [Abstract][Full Text] [Related]
12. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices. Biess A; Nagurka M; Flash T Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783 [TBL] [Abstract][Full Text] [Related]
13. Chaotic frequency scaling in a coupled oscillator model for free rhythmic actions. Raftery A; Cusumano J; Sternad D Neural Comput; 2008 Jan; 20(1):205-26. PubMed ID: 18045006 [TBL] [Abstract][Full Text] [Related]
14. Effector dynamics of rhythmic wrist activity and its implications for (modeling) bimanual coordination. Ridderikhoff A; Peper CL; Carson RG; Beek PJ Hum Mov Sci; 2004 Oct; 23(3-4):285-313. PubMed ID: 15541519 [TBL] [Abstract][Full Text] [Related]
15. Resonance tuning in a neuro-musculo-skeletal model of the forearm. Verdaasdonk BW; Koopman HF; Van der Helm FC Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977 [TBL] [Abstract][Full Text] [Related]
16. Comparing the attractor strength of intra- and interpersonal interlimb coordination using cross-recurrence analysis. Richardson MJ; Lopresti-Goodman S; Mancini M; Kay B; Schmidt RC Neurosci Lett; 2008 Jun; 438(3):340-5. PubMed ID: 18487016 [TBL] [Abstract][Full Text] [Related]
17. The effects of viscous loading of the human forearm flexors on the stability of coordination. Riek S Hum Mov Sci; 2004 Oct; 23(3-4):431-45. PubMed ID: 15541527 [TBL] [Abstract][Full Text] [Related]
18. Brain and cognitive processes of imitation in bimanual situations: Making inferences about mirror neuron systems. Franz EA; Ford S; Werner S Brain Res; 2007 May; 1145():138-49. PubMed ID: 17349983 [TBL] [Abstract][Full Text] [Related]
19. Spatial and kinematic features of apraxic movement depend on the mode of execution. Hermsdörfer J; Hentze S; Goldenberg G Neuropsychologia; 2006; 44(10):1642-52. PubMed ID: 16678222 [TBL] [Abstract][Full Text] [Related]
20. The advantage of cyclic over discrete movements remains evident following changes in load and amplitude. Smits-Engelsman BC; Swinnen SP; Duysens J Neurosci Lett; 2006 Mar; 396(1):28-32. PubMed ID: 16326008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]