These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 16525889)

  • 1. Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis.
    Bede JC; Musser RO; Felton GW; Korth KL
    Plant Mol Biol; 2006 Mar; 60(4):519-31. PubMed ID: 16525889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medicago truncatula (E)-beta-ocimene synthase is induced by insect herbivory with corresponding increases in emission of volatile ocimene.
    Navia-Giné WG; Yuan JS; Mauromoustakos A; Murphy JB; Chen F; Korth KL
    Plant Physiol Biochem; 2009 May; 47(5):416-25. PubMed ID: 19249223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of diet on the larval beet armyworm, Spodoptera exigua, glucose oxidase activity.
    Merkx-Jacques M; Bede JC
    J Insect Sci; 2005 Dec; 5():48. PubMed ID: 17119630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene Signaling Modulates Herbivore-Induced Defense Responses in the Model Legume Medicago truncatula.
    Paudel JR; Bede JC
    Mol Plant Microbe Interact; 2015 May; 28(5):569-79. PubMed ID: 25608182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secretions from the ventral eversible gland of Spodoptera exigua caterpillars activate defense-related genes and induce emission of volatile organic compounds in tomato, Solanum lycopersicum.
    Zebelo S; Piorkowski J; Disi J; Fadamiro H
    BMC Plant Biol; 2014 May; 14():140. PubMed ID: 24885633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula.
    Gomez SK; Cox MM; Bede JC; Inoue K; Alborn HT; Tumlinson JH; Korth KL
    Arch Insect Biochem Physiol; 2005 Feb; 58(2):114-27. PubMed ID: 15660362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diet-specific salivary gene expression and glucose oxidase activity in Spodoptera exigua (Lepidoptera: Noctuidae) larvae.
    Afshar K; Dufresne PJ; Pan L; Merkx-Jacques M; Bede JC
    J Insect Physiol; 2010 Dec; 56(12):1798-806. PubMed ID: 20688075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory.
    Lan Z; Krosse S; Achard P; van Dam NM; Bede JC
    J Exp Bot; 2014 Feb; 65(2):571-83. PubMed ID: 24399173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medicago truncatula Oleanolic-Derived Saponins Are Correlated with Caterpillar Deterrence.
    Cai F; Watson BS; Meek D; Huhman DV; Wherritt DJ; Ben C; Gentzbittel L; Driscoll BT; Sumner LW; Bede JC
    J Chem Ecol; 2017 Jul; 43(7):712-724. PubMed ID: 28744732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding.
    Tzin V; Hojo Y; Strickler SR; Bartsch LJ; Archer CM; Ahern KR; Zhou S; Christensen SA; Galis I; Mueller LA; Jander G
    J Exp Bot; 2017 Jul; 68(16):4709-4723. PubMed ID: 28981781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling.
    Arimura G; Garms S; Maffei M; Bossi S; Schulze B; Leitner M; Mithöfer A; Boland W
    Planta; 2008 Jan; 227(2):453-64. PubMed ID: 17924138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect-induced gene expression at the core of volatile terpene release in Medicago truncatula.
    Navia-Giné WG; Gomez SK; Yuan J; Chen F; Korth KL
    Plant Signal Behav; 2009 Jul; 4(7):639-41. PubMed ID: 19820332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clade IVa Basic Helix-Loop-Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis.
    Mertens J; Van Moerkercke A; Vanden Bossche R; Pollier J; Goossens A
    Plant Cell Physiol; 2016 Dec; 57(12):2564-2575. PubMed ID: 27694525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants.
    Musser RO; Cipollini DF; Hum-Musser SM; Williams SA; Brown JK; Felton GW
    Arch Insect Biochem Physiol; 2005 Feb; 58(2):128-37. PubMed ID: 15660363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin: characterization of wild-type and mutant alleles.
    Shen B; Zheng Z; Dooner HK
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14807-12. PubMed ID: 11106370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes.
    Richter A; Seidl-Adams I; Köllner TG; Schaff C; Tumlinson JH; Degenhardt J
    Planta; 2015 Jun; 241(6):1351-61. PubMed ID: 25680349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caterpillar- and salivary-specific modification of plant proteins.
    Thivierge K; Prado A; Driscoll BT; Bonneil E; Thibault P; Bede JC
    J Proteome Res; 2010 Nov; 9(11):5887-95. PubMed ID: 20857983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes.
    Floss DS; Hause B; Lange PR; Küster H; Strack D; Walter MH
    Plant J; 2008 Oct; 56(1):86-100. PubMed ID: 18557838
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Agliassa C; Maffei ME
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30231481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses.
    Mohanta TK; Occhipinti A; Atsbaha Zebelo S; Foti M; Fliegmann J; Bossi S; Maffei ME; Bertea CM
    PLoS One; 2012; 7(3):e32822. PubMed ID: 22448229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.