These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1652642)

  • 1. Lithium-selective permeation through lipid bilayer membranes mediated by a di-imide ionophore with nonsymmetrical imide substituents (ETH1810).
    Zeevi A; Margalit R
    J Membr Biol; 1991 Apr; 121(2):133-40. PubMed ID: 1652642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-activity relationships among noncyclic dicarboxamide Li(+)-selective carriers studied in lipid bilayer membranes.
    Zeevi A; Margalit R
    Arch Biochem Biophys; 1992 Oct; 298(1):84-90. PubMed ID: 1524446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective transport of Li+ across lipid bilayer membranes mediated by an ionophore of novel design (ETH1644).
    Zeevi A; Margalit R
    J Membr Biol; 1985; 86(1):61-7. PubMed ID: 3840208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of Li+-selective permeation through lipid bilayer membranes mediated by a new ionophore (AS701).
    Margalit R; Shanzer A
    Biochim Biophys Acta; 1981 Dec; 649(2):441-8. PubMed ID: 7317408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Li+-selective ionophores with the potential ability to mediate Li+-transport in vivo. Ionic selectivity and relative potencies, studied in model membranes.
    Margalit R; Shanzar A
    Pflugers Arch; 1982 Nov; 395(2):87-92. PubMed ID: 7177784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nonactin-type carriers.
    Krasne S; Eisenman G
    J Membr Biol; 1976 Dec; 30(1):1-44. PubMed ID: 1037004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of amine structure on complexation with lasalocid in model membrane systems. I. Identification of charged complexes in lipid bilayer membranes.
    Kinsel JF; Melnik EI; Lindenbaum S; Sternson LA; Ovchinnikov YuA
    Biochim Biophys Acta; 1982 Jan; 684(2):233-40. PubMed ID: 7055564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of amine structure on complexation with lasalocid in model membrane systems. II. Ionophore selectivity for amines in lipid bilayers and at oil/water interfaces.
    Kinsel JF; Melnik EI; Sternson LA; Lindenbaum S; Ovchinnikov YuA
    Biochim Biophys Acta; 1982 Nov; 692(3):377-83. PubMed ID: 7171601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion selectivity of the channels formed by pardaxin, an ionophore, in bilayer membranes.
    Shi YL; Edwards C; Lazarovici P
    Nat Toxins; 1995; 3(3):151-5. PubMed ID: 7544199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Monovalent ion permeability of model bilayer membranes based on lipids from tissues of various vertebrates].
    Zakarian AE; Aĭvazian NM
    Biofizika; 2002; 47(6):1068-72. PubMed ID: 12500570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability of lipid bilayer membranes to biogenic amines and cations: changes induced by ionophores and correlations with biological activities.
    Schadt M; Haeusler G
    J Membr Biol; 1974; 18(3-4):277-94. PubMed ID: 4419141
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of changes in cation concentration near bilayer lipid membrane on the rate of carrier-mediated cation fluxes and on the carrier apparent selectivity.
    Antonenko YN; Yaguzhinsky LS
    Biochim Biophys Acta; 1990 Jul; 1026(2):236-40. PubMed ID: 2165815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of alkali metal cations by lipophilic cyclodextrin derivatives through black lipid membranes.
    Kobayashi K; Mittler-Neher S; Spinke J; Wenz G; Knoll W
    Biochim Biophys Acta; 1998 Jan; 1368(1):35-40. PubMed ID: 9459582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monovalent cation conductance in the ryanodine receptor-channel of sheep cardiac muscle sarcoplasmic reticulum.
    Lindsay AR; Manning SD; Williams AJ
    J Physiol; 1991 Aug; 439():463-80. PubMed ID: 1716676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monovalent cations contribute to T-type calcium channel (Cav3.1 and Cav3.2) selectivity.
    Delisle BP; Satin J
    J Membr Biol; 2003 Jun; 193(3):185-94. PubMed ID: 12962279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.
    De Riccardis F; Izzo I; Montesarchio D; Tecilla P
    Acc Chem Res; 2013 Dec; 46(12):2781-90. PubMed ID: 23534613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry and asymmetry of permeation through toxin-modified Na+ channels.
    Garber SS
    Biophys J; 1988 Nov; 54(5):767-76. PubMed ID: 2853977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: steady-state electrical properties.
    Miller C
    J Membr Biol; 1978 Apr; 40(1):1-23. PubMed ID: 650672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of ionophoric transport of indium-111 cations through a lipid bilayer membrane.
    Choi HO; Hwang KJ
    J Nucl Med; 1987 Jan; 28(1):91-6. PubMed ID: 3098933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionophore A23187: the effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187.
    Pfeiffer DR; Lardy HA
    Biochemistry; 1976 Mar; 15(5):935-43. PubMed ID: 3212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.