These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 16526676)

  • 41. Comparative studies on adsorption behavior of thionine on gold nanoparticles with different sizes.
    Ding Y; Chen Z; Xie J; Guo R
    J Colloid Interface Sci; 2008 Nov; 327(1):243-50. PubMed ID: 18760417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gold Nanoclusters: Bridging Gold Complexes and Plasmonic Nanoparticles in Photophysical Properties.
    Zhou M; Zeng C; Li Q; Higaki T; Jin R
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrafast excited state dynamics of Pt(II) chromophores bearing multiple infrared absorbers.
    Glik EA; Kinayyigit S; Ronayne KL; Towrie M; Sazanovich IV; Weinstein JA; Castellano FN
    Inorg Chem; 2008 Aug; 47(15):6974-83. PubMed ID: 18597448
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Origin of power laws for reactions at metal surfaces mediated by hot electrons.
    Olsen T; Schiøtz J
    Phys Rev Lett; 2009 Dec; 103(23):238301. PubMed ID: 20366180
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single laser pulse induced aggregation of gold nanoparticles.
    Matsuo N; Muto H; Miyajima K; Mafuné F
    Phys Chem Chem Phys; 2007 Dec; 9(45):6027-31. PubMed ID: 18004417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.
    Boerigter C; Aslam U; Linic S
    ACS Nano; 2016 Jun; 10(6):6108-15. PubMed ID: 27268233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties.
    Polavarapu L; Xu QH
    Nanotechnology; 2009 May; 20(18):185606. PubMed ID: 19420622
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunable stabilization of gold nanoparticles in aqueous solutions by mononucleotides.
    Zhao W; Lee TM; Leung SS; Hsing IM
    Langmuir; 2007 Jun; 23(13):7143-7. PubMed ID: 17518486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoscale soldering of metal nanoparticles for construction of higher-order structures.
    Mafuné F; Kohno JY; Takeda Y; Kondow T
    J Am Chem Soc; 2003 Feb; 125(7):1686-7. PubMed ID: 12580579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots.
    Nozik AJ
    Annu Rev Phys Chem; 2001; 52():193-231. PubMed ID: 11326064
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes.
    Dai X; Wildgoose GG; Salter C; Crossley A; Compton RG
    Anal Chem; 2006 Sep; 78(17):6102-8. PubMed ID: 16944890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical investigation of the electron transfer protein azurin-gold nanoparticle system.
    Delfino I; Cannistraro S
    Biophys Chem; 2009 Jan; 139(1):1-7. PubMed ID: 18938024
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental (SERS) and theoretical (DFT) studies on the adsorption of p-, m-, and o-nitroaniline on gold nanoparticles.
    Ma W; Fang Y
    J Colloid Interface Sci; 2006 Nov; 303(1):1-8. PubMed ID: 16949090
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles.
    Yang T; Li Z; Wang L; Guo C; Sun Y
    Langmuir; 2007 Oct; 23(21):10533-8. PubMed ID: 17867715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles.
    Hoeing D; Schulz F; Mueller NS; Reich S; Lange H
    J Chem Phys; 2020 Feb; 152(6):064710. PubMed ID: 32061229
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembly of alpha,omega-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots.
    Guerrini L; Izquierdo-Lorenzo I; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S
    Phys Chem Chem Phys; 2009 Sep; 11(34):7363-71. PubMed ID: 19690707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.