These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16526691)

  • 1. One-dimensional ZnO nanostructure arrays: synthesis and characterization.
    Kar S; Pal BN; Chaudhuri S; Chakravorty D
    J Phys Chem B; 2006 Mar; 110(10):4605-11. PubMed ID: 16526691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires.
    Shen G; Cho JH; Yoo JK; Yi GC; Lee CJ
    J Phys Chem B; 2005 Mar; 109(12):5491-6. PubMed ID: 16851588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable synthesis and optical properties of novel ZnO cone arrays via vapor transport at low temperature.
    Han X; Wang G; Jie J; Choy WC; Luo Y; Yuk TI; Hou JG
    J Phys Chem B; 2005 Feb; 109(7):2733-8. PubMed ID: 16851281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method.
    Li S; Zhang X; Yan B; Yu T
    Nanotechnology; 2009 Dec; 20(49):495604. PubMed ID: 19893154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High surface-to-volume ratio ZnO microberets: low temperature synthesis, characterization, and photoluminescence.
    Lu H; Liao L; Li J; Wang D; He H; Fu Q; Xu L; Tian Y
    J Phys Chem B; 2006 Nov; 110(46):23211-4. PubMed ID: 17107167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process.
    Ghoshal T; Biswas S; Kar S; Dev A; Chakrabarti S; Chaudhuri S
    Nanotechnology; 2008 Feb; 19(6):065606. PubMed ID: 21730704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable synthesis and photoluminescence properties of ZnO nanorod and nanopin arrays.
    Yin S; Chen Y; Su Y; Jia C; Zhou Q; Li S; Xin M; Kong W; Zhang X; Lü Y
    J Nanosci Nanotechnol; 2008 Feb; 8(2):993-6. PubMed ID: 18464439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process.
    Zhu H; Iqbal J; Xu H; Yu D
    J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process.
    Shen G; Bando Y; Lee CJ
    J Phys Chem B; 2005 Jun; 109(21):10578-83. PubMed ID: 16852283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the ZnO nanowires nucleation site using microfluidic channels.
    Lee SH; Lee HJ; Oh D; Lee SW; Goto H; Buckmaster R; Yasukawa T; Matsue T; Hong SK; Ko H; Cho MW; Yao T
    J Phys Chem B; 2006 Mar; 110(9):3856-9. PubMed ID: 16509665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth mechanism and photoluminescence property of flower-like ZnO nanostructures synthesized by starch-assisted sonochemical method.
    Mishra P; Yadav RS; Pandey AC
    Ultrason Sonochem; 2010 Mar; 17(3):560-5. PubMed ID: 19932043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology-controlled synthesis of ZnO nanostructures by a simple round-to-round metal vapor deposition route.
    Shen G; Bando Y; Chen D; Liu B; Zhi C; Golberg D
    J Phys Chem B; 2006 Mar; 110(9):3973-8. PubMed ID: 16509685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synthesis and electrical characterization of Cu2O/Al:ZnO radial p-n junction nanowire arrays.
    Kuo CL; Wang RC; Huang JL; Liu CP; Wang CK; Chang SP; Chu WH; Wang CH; Tu CH
    Nanotechnology; 2009 Sep; 20(36):365603. PubMed ID: 19687549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZnO nanobelt arrays grown directly from and on zinc substrates: synthesis, characterization, and applications.
    Wen X; Fang Y; Pang Q; Yang C; Wang J; Ge W; Wong KS; Yang S
    J Phys Chem B; 2005 Aug; 109(32):15303-8. PubMed ID: 16852939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process.
    Kar S; Chaudhuri S
    J Phys Chem B; 2006 Mar; 110(10):4542-7. PubMed ID: 16526682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO.
    Ding Y; Gao PX; Wang ZL
    J Am Chem Soc; 2004 Feb; 126(7):2066-72. PubMed ID: 14971941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical assembly of ZnO nanostructures on SnO(2) backbone nanowires: low-temperature hydrothermal preparation and optical properties.
    Cheng C; Liu B; Yang H; Zhou W; Sun L; Chen R; Yu SF; Zhang J; Gong H; Sun H; Fan HJ
    ACS Nano; 2009 Oct; 3(10):3069-76. PubMed ID: 19772329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic study on experimental conditions for large-scale growth of aligned ZnO nanowires on nitrides.
    Song J; Wang X; Riedo E; Wang ZL
    J Phys Chem B; 2005 May; 109(20):9869-72. PubMed ID: 16852193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles.
    Petersen EW; Likovich EM; Russell KJ; Narayanamurti V
    Nanotechnology; 2009 Oct; 20(40):405603. PubMed ID: 19738315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.