BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16526700)

  • 1. Novel chemical sensor for cyanides: boron-doped carbon nanotubes.
    Zhang Y; Zhang D; Liu C
    J Phys Chem B; 2006 Mar; 110(10):4671-4. PubMed ID: 16526700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide.
    Wang R; Zhang D; Liu Y; Liu C
    Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde.
    Wang R; Zhang D; Zhang Y; Liu C
    J Phys Chem B; 2006 Sep; 110(37):18267-71. PubMed ID: 16970445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen adsorption on carbon-doped boron nitride nanotube.
    Baierle RJ; Piquini P; Schmidt TM; Fazzio A
    J Phys Chem B; 2006 Oct; 110(42):21184-8. PubMed ID: 17048943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas sensing properties of platinum derivatives of single-walled carbon nanotubes: A DFT analysis.
    Pannopard P; Khongpracha P; Probst M; Limtrakul J
    J Mol Graph Model; 2009 Aug; 28(1):62-9. PubMed ID: 19473862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screened exchange hybrid density-functional study of the work function of pristine and doped single-walled carbon nanotubes.
    Barone V; Peralta JE; Uddin J; Scuseria GE
    J Chem Phys; 2006 Jan; 124(2):024709. PubMed ID: 16422628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic properties and gas adsorption behaviour of pristine, silicon-, and boron-doped (8, 0) single-walled carbon nanotube: A first principles study.
    Azam MA; Alias FM; Tack LW; Seman RNAR; Taib MFM
    J Mol Graph Model; 2017 Aug; 75():85-93. PubMed ID: 28531817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chirality and diameter dependent x-ray absorption of single walled carbon nanotubes.
    Gao B; Wu Z; Agren H; Luo Y
    J Chem Phys; 2009 Jul; 131(3):034704. PubMed ID: 19624218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon-doped carbon nanotubes: a potential resource for the detection of chlorophenols/chlorophenoxy radicals.
    Jiang H; Zhang D; Wang R
    Nanotechnology; 2009 Apr; 20(14):145501. PubMed ID: 19420527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters.
    Wang HW; Wang BC; Chen WH; Hayashi M
    J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.
    Vikramaditya T; Sumithra K
    J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational and electronic structure analysis of a carbon dioxide interaction with functionalized single-walled carbon nanotubes.
    Paura EN; da Cunha WF; de Oliveira Neto PH; e Silva GM; Martins JB; Gargano R
    J Phys Chem A; 2013 Apr; 117(13):2854-61. PubMed ID: 23425025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study.
    Qiao L; Zheng WT; Xu H; Zhang L; Jiang Q
    J Chem Phys; 2007 Apr; 126(16):164702. PubMed ID: 17477619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of boron nitride impurities on the elastic properties of carbon nanotubes.
    Yuan J; Liew KM
    Nanotechnology; 2008 Nov; 19(44):445703. PubMed ID: 21832745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers.
    Zhou Z; Zhao J; Schleyer Pv; Chen Z
    J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanostructures as catalytic support for chemiluminescence of sulfur compounds in a molecular emission cavity analysis system.
    Safavi A; Maleki N; Doroodmand MM; Koleini MM
    Anal Chim Acta; 2009 Jun; 644(1-2):61-7. PubMed ID: 19463563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between glycine/glycine radicals and intrinsic/boron-doped (8,0) single-walled carbon nanotubes: a density functional theory study.
    Sun W; Bu Y; Wang Y
    J Phys Chem B; 2008 Dec; 112(48):15442-9. PubMed ID: 19006275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes.
    Wu X; Yang JL; Zeng XC
    J Chem Phys; 2006 Jul; 125(4):44704. PubMed ID: 16942171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiconducting cyanide-transition-metal nanotubes.
    Mo Y; Kaxiras E
    Small; 2007 Jul; 3(7):1253-8. PubMed ID: 17506041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.