These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 16526700)
1. Novel chemical sensor for cyanides: boron-doped carbon nanotubes. Zhang Y; Zhang D; Liu C J Phys Chem B; 2006 Mar; 110(10):4671-4. PubMed ID: 16526700 [TBL] [Abstract][Full Text] [Related]
2. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide. Wang R; Zhang D; Liu Y; Liu C Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655 [TBL] [Abstract][Full Text] [Related]
3. Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde. Wang R; Zhang D; Zhang Y; Liu C J Phys Chem B; 2006 Sep; 110(37):18267-71. PubMed ID: 16970445 [TBL] [Abstract][Full Text] [Related]
5. Gas sensing properties of platinum derivatives of single-walled carbon nanotubes: A DFT analysis. Pannopard P; Khongpracha P; Probst M; Limtrakul J J Mol Graph Model; 2009 Aug; 28(1):62-9. PubMed ID: 19473862 [TBL] [Abstract][Full Text] [Related]
6. Screened exchange hybrid density-functional study of the work function of pristine and doped single-walled carbon nanotubes. Barone V; Peralta JE; Uddin J; Scuseria GE J Chem Phys; 2006 Jan; 124(2):024709. PubMed ID: 16422628 [TBL] [Abstract][Full Text] [Related]
7. Electronic properties and gas adsorption behaviour of pristine, silicon-, and boron-doped (8, 0) single-walled carbon nanotube: A first principles study. Azam MA; Alias FM; Tack LW; Seman RNAR; Taib MFM J Mol Graph Model; 2017 Aug; 75():85-93. PubMed ID: 28531817 [TBL] [Abstract][Full Text] [Related]
8. Chirality and diameter dependent x-ray absorption of single walled carbon nanotubes. Gao B; Wu Z; Agren H; Luo Y J Chem Phys; 2009 Jul; 131(3):034704. PubMed ID: 19624218 [TBL] [Abstract][Full Text] [Related]
9. Silicon-doped carbon nanotubes: a potential resource for the detection of chlorophenols/chlorophenoxy radicals. Jiang H; Zhang D; Wang R Nanotechnology; 2009 Apr; 20(14):145501. PubMed ID: 19420527 [TBL] [Abstract][Full Text] [Related]
10. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters. Wang HW; Wang BC; Chen WH; Hayashi M J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507 [TBL] [Abstract][Full Text] [Related]
11. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption. Vikramaditya T; Sumithra K J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720 [TBL] [Abstract][Full Text] [Related]
12. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study. Rafati AA; Hashemianzadeh SM; Nojini ZB J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629 [TBL] [Abstract][Full Text] [Related]
13. Vibrational and electronic structure analysis of a carbon dioxide interaction with functionalized single-walled carbon nanotubes. Paura EN; da Cunha WF; de Oliveira Neto PH; e Silva GM; Martins JB; Gargano R J Phys Chem A; 2013 Apr; 117(13):2854-61. PubMed ID: 23425025 [TBL] [Abstract][Full Text] [Related]
15. Effects of boron nitride impurities on the elastic properties of carbon nanotubes. Yuan J; Liew KM Nanotechnology; 2008 Nov; 19(44):445703. PubMed ID: 21832745 [TBL] [Abstract][Full Text] [Related]
16. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers. Zhou Z; Zhao J; Schleyer Pv; Chen Z J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758 [TBL] [Abstract][Full Text] [Related]
17. Carbon nanostructures as catalytic support for chemiluminescence of sulfur compounds in a molecular emission cavity analysis system. Safavi A; Maleki N; Doroodmand MM; Koleini MM Anal Chim Acta; 2009 Jun; 644(1-2):61-7. PubMed ID: 19463563 [TBL] [Abstract][Full Text] [Related]
18. Interaction between glycine/glycine radicals and intrinsic/boron-doped (8,0) single-walled carbon nanotubes: a density functional theory study. Sun W; Bu Y; Wang Y J Phys Chem B; 2008 Dec; 112(48):15442-9. PubMed ID: 19006275 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes. Wu X; Yang JL; Zeng XC J Chem Phys; 2006 Jul; 125(4):44704. PubMed ID: 16942171 [TBL] [Abstract][Full Text] [Related]