BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 16526703)

  • 1. Relative optical absorption of metallic and semiconducting single-walled carbon nanotubes.
    Huang H; Kajiura H; Maruyama R; Kadono K; Noda K
    J Phys Chem B; 2006 Mar; 110(10):4686-90. PubMed ID: 16526703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes.
    Qiu H; Maeda Y; Akasaka T
    J Am Chem Soc; 2009 Nov; 131(45):16529-33. PubMed ID: 19860464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound.
    Toyoda S; Yamaguchi Y; Hiwatashi M; Tomonari Y; Murakami H; Nakashima N
    Chem Asian J; 2007 Jan; 2(1):145-9. PubMed ID: 17441147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts.
    Lu J; Lai L; Luo G; Zhou J; Qin R; Wang D; Wang L; Mei WN; Li G; Gao Z; Nagase S; Maeda Y; Akasaka T; Yu D
    Small; 2007 Sep; 3(9):1566-76. PubMed ID: 17705313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection.
    Li X; Tu X; Zaric S; Welsher K; Seo WS; Zhao W; Dai H
    J Am Chem Soc; 2007 Dec; 129(51):15770-1. PubMed ID: 18052285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characteristics of differently produced single-walled carbon nanotubes.
    Li Z; Zheng L; Yan W; Pan Z; Wei S
    Chemphyschem; 2009 Sep; 10(13):2296-304. PubMed ID: 19569089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm.
    Sun X; Zaric S; Daranciang D; Welsher K; Lu Y; Li X; Dai H
    J Am Chem Soc; 2008 May; 130(20):6551-5. PubMed ID: 18426207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes.
    Zhang L; Tu X; Welsher K; Wang X; Zheng M; Dai H
    J Am Chem Soc; 2009 Feb; 131(7):2454-5. PubMed ID: 19193007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy.
    Attal S; Thiruvengadathan R; Regev O
    Anal Chem; 2006 Dec; 78(23):8098-104. PubMed ID: 17134145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (n,m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy.
    Luo Z; Pfefferle LD; Haller GL; Papadimitrakopoulos F
    J Am Chem Soc; 2006 Dec; 128(48):15511-6. PubMed ID: 17132018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes.
    Chattopadhyay D; Galeska I; Papadimitrakopoulos F
    J Am Chem Soc; 2003 Mar; 125(11):3370-5. PubMed ID: 12630892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-assigned optical spectra of single-walled carbon nanotubes.
    Bachilo SM; Strano MS; Kittrell C; Hauge RH; Smalley RE; Weisman RB
    Science; 2002 Dec; 298(5602):2361-6. PubMed ID: 12459549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method of separating metallic and semiconducting single-walled carbon nanotubes based on molecular charge transfer.
    Voggu R; Rao KV; George SJ; Rao CN
    J Am Chem Soc; 2010 Apr; 132(16):5560-1. PubMed ID: 20361795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions.
    Kanungo M; Lu H; Malliaras GG; Blanchet GB
    Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants.
    Kim Y; Hong S; Jung S; Strano MS; Choi J; Baik S
    J Phys Chem B; 2006 Feb; 110(4):1541-5. PubMed ID: 16471712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state 13C NMR assignment of carbon resonances on metallic and semiconducting single-walled carbon nanotubes.
    Engtrakul C; Davis MF; Mistry K; Larsen BA; Dillon AC; Heben MJ; Blackburn JL
    J Am Chem Soc; 2010 Jul; 132(29):9956-7. PubMed ID: 20593776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.
    Lu F; Meziani MJ; Cao L; Sun YP
    Langmuir; 2011 Apr; 27(8):4339-50. PubMed ID: 20942475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors.
    Wang S; Liang XL; Chen Q; Zhang ZY; Peng LM
    J Phys Chem B; 2005 Sep; 109(37):17361-5. PubMed ID: 16853219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.