These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 16526764)

  • 21. Carbocations (M + H)(+) and oxidation dications (M(2+)) from benzo[a]pyrene and its nonalternant isomers azulenophenalenes: a theoretical (DFT, GIAO, NICS) study.
    Okazaki T; Laali KK
    J Org Chem; 2004 Jan; 69(2):510-6. PubMed ID: 14725467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency of the NICSzz-scan curves to probe the antiaromaticity of organic and inorganic rings/cages.
    Tsipis AC
    Phys Chem Chem Phys; 2009 Oct; 11(37):8244-61. PubMed ID: 19756281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dications of fluorenylidenes. The relationship between redox potentials and antiaromaticity for meta- and para-substituted diphenylmethylidenefluorenes.
    Mills NS; Tirla C; Benish MA; Rakowitz AJ; Bebell LM; Hurd CM; Bria AL
    J Org Chem; 2005 Dec; 70(26):10709-16. PubMed ID: 16355989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic euripi in corannulene.
    Monaco G; Scott LT; Zanasi R
    J Phys Chem A; 2008 Sep; 112(35):8136-47. PubMed ID: 18693706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of transition state aromaticity and antiaromaticity on intrinsic barriers of proton transfers in aromatic and antiaromatic heterocyclic systems; an ab initio study.
    Bernasconi CF; Wenzel PJ
    J Org Chem; 2010 Dec; 75(24):8422-34. PubMed ID: 21080690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity.
    Schleyer PVR; Manoharan M; Wang ZX; Kiran B; Jiao H; Puchta R; van Eikema Hommes NJR
    Org Lett; 2001 Aug; 3(16):2465-2468. PubMed ID: 29446959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic properties and aromaticity of o-, m-, and p-benzyne.
    De Proft F; von Ragué Schleyer P; van Lenthe JH; Stahl F; Geerlings P
    Chemistry; 2002 Aug; 8(15):3402-10. PubMed ID: 12203320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aromaticity and antiaromaticity in transition-metal systems.
    Zubarev DY; Averkiev BB; Zhai HJ; Wang LS; Boldyrev AI
    Phys Chem Chem Phys; 2008 Jan; 10(2):257-67. PubMed ID: 18213412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local aromaticity of the six-membered rings in pyracylene. A difficult case for the NICS indicator of aromaticity.
    Poater J; Solà M; Viglione RG; Zanasi R
    J Org Chem; 2004 Oct; 69(22):7537-42. PubMed ID: 15497979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting 9Be nuclear magnetic resonance chemical shielding tensors utilizing density functional theory.
    Plieger PG; John KD; Keizer TS; McCleskey TM; Burrell AK; Martin RL
    J Am Chem Soc; 2004 Nov; 126(44):14651-8. PubMed ID: 15521785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Super-delocalized valence isomer of coronene.
    Ciesielski A; Cyrański MK; Krygowski TM; Fowler PW; Lillington M
    J Org Chem; 2006 Sep; 71(18):6840-5. PubMed ID: 16930035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A quantitative scale for the degree of aromaticity and antiaromaticity: a comparison of theoretical and experimental enthalpies of hydrogenation.
    Mucsi Z; Viskolcz B; Csizmadia IG
    J Phys Chem A; 2007 Feb; 111(6):1123-32. PubMed ID: 17286363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 1H chemical shifts in NMR. Part 21--prediction of the 1H chemical shifts of molecules containing the ester group: a modelling and ab initio investigation.
    Abraham RJ; Bardsley B; Mobli M; Smith RJ
    Magn Reson Chem; 2005 Jan; 43(1):3-15. PubMed ID: 15390026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study of the aromaticity of heteroannelated cyclooctatetraene derivatives.
    Abdukadir A; Mattursun A; Kerim A; Omar K; Hushur L
    J Mol Model; 2018 May; 24(6):123. PubMed ID: 29721619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR property calculations and experimental study of the 1,6-epoxycarvone and α-epoxypinene: a comparison of models.
    Queiroz LH; Lacerda V; dos Santos RB; Greco SJ; Cunha Neto A; de Castro EV
    Magn Reson Chem; 2011 Mar; 49(3):140-6. PubMed ID: 21322010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic Shielding, Aromaticity, Antiaromaticity and Bonding in the Low-Lying Electronic States of S
    Karadakov PB; Al-Yassiri MAH; Cooper DL
    Chemistry; 2018 Nov; 24(63):16791-16803. PubMed ID: 30270473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the 5f orbitals in bonding, aromaticity, and reactivity of planar isocyclic and heterocyclic uranium clusters.
    Tsipis AC; Kefalidis CE; Tsipis CA
    J Am Chem Soc; 2008 Jul; 130(28):9144-55. PubMed ID: 18570422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computed NMR shielding increments over unsaturated five-membered ring heterocyclic compounds as a measure of aromaticity.
    Martin NH; Rowe JE; Pittman EL
    J Mol Graph Model; 2009; 27(8):853-9. PubMed ID: 19213585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of benzenoid and quinonoid structures by through-space NMR shieldings (TSNMRS).
    Kleinpeter E; Koch A
    J Phys Chem A; 2010 May; 114(18):5928-31. PubMed ID: 20377212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An energetic measure of aromaticity and antiaromaticity based on the Pauling-Wheland resonance energies.
    Mo Y; von Ragué Schleyer P
    Chemistry; 2006 Feb; 12(7):2009-20. PubMed ID: 16342222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.