These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16526950)
1. An unsupervised classification scheme for improving predictions of prokaryotic TIS. Tech M; Meinicke P BMC Bioinformatics; 2006 Mar; 7():121. PubMed ID: 16526950 [TBL] [Abstract][Full Text] [Related]
2. TICO: a tool for improving predictions of prokaryotic translation initiation sites. Tech M; Pfeifer N; Morgenstern B; Meinicke P Bioinformatics; 2005 Sep; 21(17):3568-9. PubMed ID: 15994191 [TBL] [Abstract][Full Text] [Related]
3. Accuracy improvement for identifying translation initiation sites in microbial genomes. Zhu HQ; Hu GQ; Ouyang ZQ; Wang J; She ZS Bioinformatics; 2004 Dec; 20(18):3308-17. PubMed ID: 15247104 [TBL] [Abstract][Full Text] [Related]
4. Computational evaluation of TIS annotation for prokaryotic genomes. Hu GQ; Zheng X; Ju LN; Zhu H; She ZS BMC Bioinformatics; 2008 Mar; 9():160. PubMed ID: 18366730 [TBL] [Abstract][Full Text] [Related]
5. TICO: a tool for postprocessing the predictions of prokaryotic translation initiation sites. Tech M; Morgenstern B; Meinicke P Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W588-90. PubMed ID: 16845076 [TBL] [Abstract][Full Text] [Related]
6. MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes. Zhu H; Hu GQ; Yang YF; Wang J; She ZS BMC Bioinformatics; 2007 Mar; 8():97. PubMed ID: 17367537 [TBL] [Abstract][Full Text] [Related]
7. Finding prokaryotic genes by the 'frame-by-frame' algorithm: targeting gene starts and overlapping genes. Shmatkov AM; Melikyan AA; Chernousko FL; Borodovsky M Bioinformatics; 1999 Nov; 15(11):874-86. PubMed ID: 10743554 [TBL] [Abstract][Full Text] [Related]
8. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Besemer J; Lomsadze A; Borodovsky M Nucleic Acids Res; 2001 Jun; 29(12):2607-18. PubMed ID: 11410670 [TBL] [Abstract][Full Text] [Related]
9. Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites. Meinicke P; Tech M; Morgenstern B; Merkl R BMC Bioinformatics; 2004 Oct; 5():169. PubMed ID: 15511290 [TBL] [Abstract][Full Text] [Related]
11. ProSOM: core promoter prediction based on unsupervised clustering of DNA physical profiles. Abeel T; Saeys Y; Rouzé P; Van de Peer Y Bioinformatics; 2008 Jul; 24(13):i24-31. PubMed ID: 18586720 [TBL] [Abstract][Full Text] [Related]
12. Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes. Makita Y; de Hoon MJ; Danchin A BMC Bioinformatics; 2007 Feb; 8():47. PubMed ID: 17286872 [TBL] [Abstract][Full Text] [Related]
13. A comparative genomic method for computational identification of prokaryotic translation initiation sites. Walker M; Pavlovic V; Kasif S Nucleic Acids Res; 2002 Jul; 30(14):3181-91. PubMed ID: 12136100 [TBL] [Abstract][Full Text] [Related]
14. Engineering support vector machine kernels that recognize translation initiation sites. Zien A; Rätsch G; Mika S; Schölkopf B; Lengauer T; Müller KR Bioinformatics; 2000 Sep; 16(9):799-807. PubMed ID: 11108702 [TBL] [Abstract][Full Text] [Related]
15. Gene prediction in metagenomic fragments: a large scale machine learning approach. Hoff KJ; Tech M; Lingner T; Daniel R; Morgenstern B; Meinicke P BMC Bioinformatics; 2008 Apr; 9():217. PubMed ID: 18442389 [TBL] [Abstract][Full Text] [Related]
16. Starts of bacterial genes: estimating the reliability of computer predictions. Frishman D; Mironov A; Gelfand M Gene; 1999 Jul; 234(2):257-65. PubMed ID: 10395898 [TBL] [Abstract][Full Text] [Related]
17. ProTISA: a comprehensive resource for translation initiation site annotation in prokaryotic genomes. Hu GQ; Zheng X; Yang YF; Ortet P; She ZS; Zhu H Nucleic Acids Res; 2008 Jan; 36(Database issue):D114-9. PubMed ID: 17942412 [TBL] [Abstract][Full Text] [Related]
18. Gene function prediction based on genomic context clustering and discriminative learning: an application to bacteriophages. Li J; Halgamuge SK; Kells CI; Tang SL BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S6. PubMed ID: 17570149 [TBL] [Abstract][Full Text] [Related]
19. Gradient-based optimization of kernel-target alignment for sequence kernels applied to bacterial gene start detection. Igel C; Glasmachers T; Mersch B; Pfeifer N; Meinicke P IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):216-26. PubMed ID: 17473315 [TBL] [Abstract][Full Text] [Related]