These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16526963)

  • 1. Selection of antisense oligonucleotides based on multiple predicted target mRNA structures.
    Bo X; Lou S; Sun D; Shu W; Yang J; Wang S
    BMC Bioinformatics; 2006 Mar; 7():122. PubMed ID: 16526963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TargetFinder: a software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA.
    Bo X; Wang S
    Bioinformatics; 2005 Apr; 21(8):1401-2. PubMed ID: 15598838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational antisense oligo prediction with a neural network model.
    Chalk AM; Sonnhammer EL
    Bioinformatics; 2002 Dec; 18(12):1567-75. PubMed ID: 12490440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational models with thermodynamic and composition features improve siRNA design.
    Shabalina SA; Spiridonov AN; Ogurtsov AY
    BMC Bioinformatics; 2006 Feb; 7():65. PubMed ID: 16472402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu.
    't Hoen PA; Out R; Commandeur JN; Vermeulen NP; van Batenburg FH; Manoharan M; van Berkel TJ; Biessen EA; Bijsterbosch MK
    RNA; 2002 Dec; 8(12):1572-83. PubMed ID: 12515389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of RNA-RNA binding.
    Mückstein U; Tafer H; Hackermüller J; Bernhart SH; Stadler PF; Hofacker IL
    Bioinformatics; 2006 May; 22(10):1177-82. PubMed ID: 16446276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A potent inhibitor of prothrombin gene expression as a result of standardized target site selection and design of antisense oligonucleotides.
    Böhl M; Schwenzer B
    Oligonucleotides; 2005; 15(3):172-82. PubMed ID: 16201905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of antisense drug design against conservative local motif in simulant secondary structures of HER-2 mRNA and QSAR analysis.
    Yang SP; Song ST; Tang ZM; Song HF
    Acta Pharmacol Sin; 2003 Sep; 24(9):897-902. PubMed ID: 12956938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of mRNA self-structure on hybridization: computational tools for antisense sequence selection.
    Toschi N
    Methods; 2000 Nov; 22(3):261-9. PubMed ID: 11071822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of antisense oligonucleotide efficacy using aggregate motifs.
    Sipes TB; Freier SM
    J Bioinform Comput Biol; 2008 Oct; 6(5):919-32. PubMed ID: 18942159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of sequence motifs significantly associated with antisense activity.
    McQuisten KA; Peek AS
    BMC Bioinformatics; 2007 Jun; 8():184. PubMed ID: 17555590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust prediction of consensus secondary structures using averaged base pairing probability matrices.
    Kiryu H; Kin T; Asai K
    Bioinformatics; 2007 Feb; 23(4):434-41. PubMed ID: 17182698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical improvements in the computational target search for antisense oligonucleotides.
    Far RK; Leppert J; Frank K; Sczakiel G
    Oligonucleotides; 2005; 15(3):223-33. PubMed ID: 16201910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient suppression of tissue factor synthesis using antisense oligonucleotides selected by an enhanced strategy for evaluation of structural characteristics.
    Förster Y; Schwenzer B
    Oligonucleotides; 2008 Dec; 18(4):355-64. PubMed ID: 18928330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations in the identification of functional RNA structural elements in genomic alignments.
    Babak T; Blencowe BJ; Hughes TR
    BMC Bioinformatics; 2007 Jan; 8():33. PubMed ID: 17263882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. siRNA becomes smart and intelligent.
    Miyagishi M; Taira K
    Nat Biotechnol; 2005 Aug; 23(8):946-7. PubMed ID: 16082364
    [No Abstract]   [Full Text] [Related]  

  • 17. Design of a genome-wide siRNA library using an artificial neural network.
    Huesken D; Lange J; Mickanin C; Weiler J; Asselbergs F; Warner J; Meloon B; Engel S; Rosenberg A; Cohen D; Labow M; Reinhardt M; Natt F; Hall J
    Nat Biotechnol; 2005 Aug; 23(8):995-1001. PubMed ID: 16025102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of secondary structure prediction in antisense drug design targeting protein kinase C-alpha mRNA and QSAR analysis.
    Song HF; Tang ZM; Yuan SJ; Zhu BZ
    Acta Pharmacol Sin; 2000 Jan; 21(1):80-6. PubMed ID: 11263253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. www.rnaworkbench.com: A new program for analyzing RNA interference.
    Vareková RS; Bradác I; Plchút M; Skrdla M; Wacenovsky M; Mahr H; Mayer G; Tanner H; Brugger H; Withalm J; Lederer P; Huber H; Gierlinger G; Graf R; Tafer H; Hofacker I; Schuster P; Polcík M
    Comput Methods Programs Biomed; 2008 Apr; 90(1):89-94. PubMed ID: 18207283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.
    Gredell JA; Berger AK; Walton SP
    Biotechnol Bioeng; 2008 Jul; 100(4):744-55. PubMed ID: 18306428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.