These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16526963)

  • 41. ["Target secondary structural motif" in the action of antisense oligodeoxynucleotides].
    Song HF; Tang ZM
    Yao Xue Xue Bao; 2001 Aug; 36(8):585-9. PubMed ID: 12579934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A genomic selection strategy to identify accessible and dimerization blocking targets in the 5'-UTR of HIV-1 RNA.
    Jakobsen MR; Damgaard CK; Andersen ES; Podhajska A; Kjems J
    Nucleic Acids Res; 2004 Apr; 32(7):e67. PubMed ID: 15107482
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CONTRAfold: RNA secondary structure prediction without physics-based models.
    Do CB; Woods DA; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e90-8. PubMed ID: 16873527
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting antisense oligonucleotide inhibitory efficacy: a computational approach using histograms and thermodynamic indices.
    Stull RA; Taylor LA; Szoka FC
    Nucleic Acids Res; 1992 Jul; 20(13):3501-8. PubMed ID: 1352874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package.
    Kumar Y; Westram R; Kipfer P; Meier H; Ludwig W
    BMC Bioinformatics; 2006 May; 7():240. PubMed ID: 16672074
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Seed-based INTARNA prediction combined with GFP-reporter system identifies mRNA targets of the small RNA Yfr1.
    Richter AS; Schleberger C; Backofen R; Steglich C
    Bioinformatics; 2010 Jan; 26(1):1-5. PubMed ID: 19850757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SimulFold: simultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework.
    Meyer IM; Miklós I
    PLoS Comput Biol; 2007 Aug; 3(8):e149. PubMed ID: 17696604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Naïve Bayes for microRNA target predictions--machine learning for microRNA targets.
    Yousef M; Jung S; Kossenkov AV; Showe LC; Showe MK
    Bioinformatics; 2007 Nov; 23(22):2987-92. PubMed ID: 17925304
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selection of optimal antisense accessible sites of uroplakin II mRNA for bladder urothelium.
    Zheng L; Tong Q; Chen F; Zeng F; Wang L; Dong J
    J Huazhong Univ Sci Technolog Med Sci; 2009 Jun; 29(3):344-9. PubMed ID: 19513619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of sequences in rotavirus mRNAs important for minus strand synthesis using antisense oligonucleotides.
    Barro M; Mandiola P; Chen D; Patton JT; Spencer E
    Virology; 2001 Sep; 288(1):71-80. PubMed ID: 11543659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioinformatic analyses of mammalian 5'-UTR sequence properties of mRNAs predicts alternative translation initiation sites.
    Wegrzyn JL; Drudge TM; Valafar F; Hook V
    BMC Bioinformatics; 2008 May; 9():232. PubMed ID: 18466625
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change.
    Uzilov AV; Keegan JM; Mathews DH
    BMC Bioinformatics; 2006 Mar; 7():173. PubMed ID: 16566836
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.
    Echigoya Y; Mouly V; Garcia L; Yokota T; Duddy W
    PLoS One; 2015; 10(3):e0120058. PubMed ID: 25816009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Secondary structure prediction and in vitro accessibility of mRNA as tools in the selection of target sites for ribozymes.
    Amarzguioui M; Brede G; Babaie E; Grotli M; Sproat B; Prydz H
    Nucleic Acids Res; 2000 Nov; 28(21):4113-24. PubMed ID: 11058107
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA accessibility prediction: a theoretical approach is consistent with experimental studies in cell extracts.
    Scherr M; Rossi JJ; Sczakiel G; Patzel V
    Nucleic Acids Res; 2000 Jul; 28(13):2455-61. PubMed ID: 10871393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting RNA structure using mutual information.
    Freyhult E; Moulton V; Gardner P
    Appl Bioinformatics; 2005; 4(1):53-9. PubMed ID: 16000013
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alignment editing and identification of consensus secondary structures for nucleic acid sequences: interactive use of dot matrix representations.
    Davis JP; Janjić N; Pribnow D; Zichi DA
    Nucleic Acids Res; 1995 Nov; 23(21):4471-9. PubMed ID: 7501472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Bioinformatics; 2005 Jun; 21(11):2611-7. PubMed ID: 15784748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antisense Oligonucleotide (AS-ODN) Technology: Principle, Mechanism and Challenges.
    Gheibi-Hayat SM; Jamialahmadi K
    Biotechnol Appl Biochem; 2021 Oct; 68(5):1086-1094. PubMed ID: 32964539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of antisense oligonucleotide binding affinity to a structured RNA target.
    Walton SP; Stephanopoulos GN; Yarmush ML; Roth CM
    Biotechnol Bioeng; 1999 Oct; 65(1):1-9. PubMed ID: 10440665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.