These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 16527466)

  • 1. Water retention and drainage in different brands of microcrystalline cellulose: effect of measuring conditions.
    Nikolakakis I; Tsarvouli K; Malamataris S
    Eur J Pharm Biopharm; 2006 Jul; 63(3):278-87. PubMed ID: 16527466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a powder rheometer.
    Luukkonen P; Schaefer T; Podczeck F; Newton M; Hellén L; Yliruusi J
    Eur J Pharm Sci; 2001 May; 13(2):143-9. PubMed ID: 11297898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer.
    Luukkonen P; Schaefer T; Hellén L; Juppo AM; Yliruusi J
    Int J Pharm; 1999 Oct; 188(2):181-92. PubMed ID: 10518674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative evaluations of powder and mechanical properties of low crystallinity celluloses, microcrystalline celluloses, and powdered celluloses.
    Kothari SH; Kumar V; Banker GS
    Int J Pharm; 2002 Jan; 232(1-2):69-80. PubMed ID: 11790491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile strength and disintegration of tableted silicified microcrystalline cellulose: influences of interparticle bonding.
    Kachrimanis K; Nikolakakis I; Malamataris S
    J Pharm Sci; 2003 Jul; 92(7):1489-501. PubMed ID: 12820153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on the effect of wet granulation on microcrystalline cellulose particle structure and performance.
    Badawy SI; Gray DB; Hussain MA
    Pharm Res; 2006 Mar; 23(3):634-40. PubMed ID: 16382277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the water retention capacities (MRC) of different microcrystalline cellulose grades.
    Tomer G; Patel H; Podczeck F; Newton JM
    Eur J Pharm Sci; 2001 Jan; 12(3):321-5. PubMed ID: 11113651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a capillary rheometer to evaluate the rheological properties of microcrystalline cellulose and silicified microcrystalline cellulose wet masses.
    Luukkonen P; Newton JM; Podczeck F; Yliruusi J
    Int J Pharm; 2001 Mar; 216(1-2):147-57. PubMed ID: 11274816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is silicified wet-granulated microcrystalline cellulose better than original wet-granulated microcrystalline cellulose?
    Habib YS; Abramowitz R; Jerzewski RL; Jain NB; Agharkar SN
    Pharm Dev Technol; 1999 Aug; 4(3):431-7. PubMed ID: 10434289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A centrifuge technique for the evaluation of the extent of water movement in wet powder masses.
    Tomer G; Newton JM
    Int J Pharm; 1999 Oct; 188(1):31-8. PubMed ID: 10528080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of two commercial brands of microcrystalline cellulose for extrusion-spheronization.
    Law MF; Deasy PB; McLaughlin JP; Gabriel S
    J Microencapsul; 1997; 14(6):713-23. PubMed ID: 9394252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. True density of microcrystalline cellulose.
    Sun CC
    J Pharm Sci; 2005 Oct; 94(10):2132-4. PubMed ID: 16136576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To prepare and characterize microcrystalline cellulose granules using water and isopropyl alcohol as granulating agents and determine its end-point by thermal and rheological tools.
    Chaudhari SP; Dave RH
    Drug Dev Ind Pharm; 2015 May; 41(5):744-52. PubMed ID: 24654935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcrystalline cellulose-water interaction--a novel approach using thermoporosimetry.
    Luukkonen P; Maloney T; Rantanen J; Paulapuro H; Yliruusi J
    Pharm Res; 2001 Nov; 18(11):1562-9. PubMed ID: 11758764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preformulation: effect of moisture content on microcrystalline cellulose (Avicel PH-302) and its consequences on packing performances.
    Nicolas V; Chambin O; Andrès C; Rochat-Gonthier MH; Pourcelot Y
    Drug Dev Ind Pharm; 1999 Oct; 25(10):1137-42. PubMed ID: 10529895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of microcrystalline cellulose and powder cellulose after extrusion/spheronization as studied by fourier transform Raman spectroscopy and environmental scanning electron microscopy.
    Fechner PM; Wartewig S; Füting M; Heilmann A; Neubert RH; Kleinebudde P
    AAPS PharmSci; 2003 Nov; 5(4):E31. PubMed ID: 15198519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose.
    van Veen B; Bolhuis GK; Wu YS; Zuurman K; Frijlink HW
    Eur J Pharm Biopharm; 2005 Jan; 59(1):133-8. PubMed ID: 15567310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct pelletization in a rotary processor controlled by torque measurements. III. Investigation of microcrystalline cellulose and lactose grade.
    Kristensen J
    AAPS PharmSciTech; 2005 Oct; 6(3):E495-503. PubMed ID: 16354010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator.
    Mazel V; Busignies V; Diarra H; Tchoreloff P
    J Pharm Sci; 2012 Jun; 101(6):2220-8. PubMed ID: 22430162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evaluation of modified microcrystalline cellulose for the preparation of pellets with high drug loading by extrusion/spheronization.
    Podczeck F; Knight PE; Newton JM
    Int J Pharm; 2008 Feb; 350(1-2):145-54. PubMed ID: 17905548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.