BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 16527751)

  • 61. CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling.
    Hiruma Y; Sacristan C; Pachis ST; Adamopoulos A; Kuijt T; Ubbink M; von Castelmur E; Perrakis A; Kops GJ
    Science; 2015 Jun; 348(6240):1264-7. PubMed ID: 26068855
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Kinetochore fiber formation in animal somatic cells: dueling mechanisms come to a draw.
    Rieder CL
    Chromosoma; 2005 Nov; 114(5):310-8. PubMed ID: 16270218
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex.
    Westermann S; Avila-Sakar A; Wang HW; Niederstrasser H; Wong J; Drubin DG; Nogales E; Barnes G
    Mol Cell; 2005 Jan; 17(2):277-90. PubMed ID: 15664196
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ran-GTP regulates kinetochore attachment in somatic cells.
    Arnaoutov A; Dasso M
    Cell Cycle; 2005 Sep; 4(9):1161-5. PubMed ID: 16082212
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A centrosome-independent role for gamma-TuRC proteins in the spindle assembly checkpoint.
    Müller H; Fogeron ML; Lehmann V; Lehrach H; Lange BM
    Science; 2006 Oct; 314(5799):654-7. PubMed ID: 17068266
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electron cryotomography analysis of Dam1C/DASH at the kinetochore-spindle interface in situ.
    Ng CT; Deng L; Chen C; Lim HH; Shi J; Surana U; Gan L
    J Cell Biol; 2019 Feb; 218(2):455-473. PubMed ID: 30504246
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hepatoma up-regulated protein is required for chromatin-induced microtubule assembly independently of TPX2.
    Casanova CM; Rybina S; Yokoyama H; Karsenti E; Mattaj IW
    Mol Biol Cell; 2008 Nov; 19(11):4900-8. PubMed ID: 18799614
    [TBL] [Abstract][Full Text] [Related]  

  • 68. TPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle.
    Ma N; Titus J; Gable A; Ross JL; Wadsworth P
    J Cell Biol; 2011 Oct; 195(1):87-98. PubMed ID: 21969468
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A centrosomal protein STARD9 promotes microtubule stability and regulates spindle microtubule dynamics.
    Srivastava S; Panda D
    Cell Cycle; 2018; 17(16):2052-2068. PubMed ID: 30160609
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Kinetochore microtubules shorten by loss of subunits at the kinetochores of prometaphase chromosomes.
    Cassimeris L; Salmon ED
    J Cell Sci; 1991 Feb; 98 ( Pt 2)():151-8. PubMed ID: 2055954
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint.
    Zhou J; Panda D; Landen JW; Wilson L; Joshi HC
    J Biol Chem; 2002 May; 277(19):17200-8. PubMed ID: 11864974
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Peripheral, non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells.
    Tulu US; Rusan NM; Wadsworth P
    Curr Biol; 2003 Oct; 13(21):1894-9. PubMed ID: 14588246
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulated assembly of the mitotic spindle: a perspective from two ends.
    Cassimeris L; Skibbens RV
    Curr Issues Mol Biol; 2003 Jul; 5(3):99-112. PubMed ID: 12866832
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Distinct mechanisms govern the localisation of Drosophila CLIP-190 to unattached kinetochores and microtubule plus-ends.
    Dzhindzhev NS; Rogers SL; Vale RD; Ohkura H
    J Cell Sci; 2005 Aug; 118(Pt 16):3781-90. PubMed ID: 16105886
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kinetochore-microtubule interactions during cell division.
    Maiato H; Sunkel CE
    Chromosome Res; 2004; 12(6):585-97. PubMed ID: 15289665
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function.
    Pereira AL; Pereira AJ; Maia AR; Drabek K; Sayas CL; Hergert PJ; Lince-Faria M; Matos I; Duque C; Stepanova T; Rieder CL; Earnshaw WC; Galjart N; Maiato H
    Mol Biol Cell; 2006 Oct; 17(10):4526-42. PubMed ID: 16914514
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microtubules assemble near most kinetochores during early prometaphase in human cells.
    Sikirzhytski V; Renda F; Tikhonenko I; Magidson V; McEwen BF; Khodjakov A
    J Cell Biol; 2018 Aug; 217(8):2647-2659. PubMed ID: 29907657
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Force on spindle microtubule minus ends moves chromosomes.
    Elting MW; Hueschen CL; Udy DB; Dumont S
    J Cell Biol; 2014 Jul; 206(2):245-56. PubMed ID: 25023517
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Measuring Kinetochore-Microtubule Attachment Stability in Cultured Cells.
    DeLuca KF; Herman JA; DeLuca JG
    Methods Mol Biol; 2016; 1413():147-68. PubMed ID: 27193848
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Stability of microtubule attachment to metaphase kinetochores in PtK1 cells.
    Cassimeris L; Rieder CL; Rupp G; Salmon ED
    J Cell Sci; 1990 May; 96 ( Pt 1)():9-15. PubMed ID: 2197288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.