These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 16527985)

  • 1. Patterning the early Xenopus embryo.
    Heasman J
    Development; 2006 Apr; 133(7):1205-17. PubMed ID: 16527985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos.
    Fukumoto T; Kema IP; Levin M
    Curr Biol; 2005 May; 15(9):794-803. PubMed ID: 15886096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning.
    Kumano G; Smith WC
    Dev Dyn; 2002 Dec; 225(4):409-21. PubMed ID: 12454919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rethinking axial patterning in amphibians.
    Lane MC; Sheets MD
    Dev Dyn; 2002 Dec; 225(4):434-47. PubMed ID: 12454921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development.
    Lane MC; Sheets MD
    Dev Biol; 2006 Aug; 296(1):12-28. PubMed ID: 16750823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide growth factors in amphibian embryogenesis: intersection of modern molecular approaches with traditional inductive interaction paradigms.
    Asashima M; Yokota C; Takahashi S; Lau CL; Malacinski GM
    Int J Dev Biol; 1999 Jan; 43(1):1-10. PubMed ID: 10213077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertebrate anteroposterior patterning: the Xenopus neurectoderm as a paradigm.
    Gamse J; Sive H
    Bioessays; 2000 Nov; 22(11):976-86. PubMed ID: 11056474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Related signaling networks in Drosophila that control dorsoventral patterning in the embryo and the immune response.
    Wu LP; Anderson KV
    Cold Spring Harb Symp Quant Biol; 1997; 62():97-103. PubMed ID: 9598341
    [No Abstract]   [Full Text] [Related]  

  • 10. Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development.
    Webb SE; Miller AL
    Biochim Biophys Acta; 2006 Nov; 1763(11):1192-208. PubMed ID: 16962186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chapter 5. Patterning the spiralian embryo: insights from Ilyanassa.
    Lambert JD
    Curr Top Dev Biol; 2009; 86():107-33. PubMed ID: 19361691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wnt3 signaling in the epiblast is required for proper orientation of the anteroposterior axis.
    Barrow JR; Howell WD; Rule M; Hayashi S; Thomas KR; Capecchi MR; McMahon AP
    Dev Biol; 2007 Dec; 312(1):312-20. PubMed ID: 18028899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis.
    Bracken CM; Mizeracka K; McLaughlin KA
    Dev Dyn; 2008 Jan; 237(1):132-44. PubMed ID: 18069689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ signalling and early embryonic patterning during zebrafish development.
    Webb SE; Miller AL
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):897-904. PubMed ID: 17645637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential role of 14-3-3 family members in Xenopus development.
    Lau JM; Wu C; Muslin AJ
    Dev Dyn; 2006 Jul; 235(7):1761-76. PubMed ID: 16607644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of Xenopus development.
    Jones CM; Smith JC
    Methods Mol Biol; 2008; 461():385-94. PubMed ID: 19030813
    [No Abstract]   [Full Text] [Related]  

  • 17. What's your position? the Xenopus cement gland as a paradigm of regional specification.
    Wardle FC; Sive HL
    Bioessays; 2003 Jul; 25(7):717-26. PubMed ID: 12815727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extensive increase of junctional communication capacity in endoderm development of the Xenopus embryo.
    Chen DL
    Shi Yan Sheng Wu Xue Bao; 1989 Mar; 22(1):43-55. PubMed ID: 2763765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus.
    Fletcher RB; Baker JC; Harland RM
    Development; 2006 May; 133(9):1703-14. PubMed ID: 16554360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms.
    Pan FC; Chen Y; Bayha E; Pieler T
    Mech Dev; 2007 Aug; 124(7-8):518-31. PubMed ID: 17643968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.