These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16528255)

  • 21. The effect of ultrafiltration on dialysance. Mathematical theory and experimental verification.
    Hootkins R; Bourgeois B
    ASAIO Trans; 1991; 37(3):M375-7. PubMed ID: 1751195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The human nephron filter: toward a continuously functioning, implantable artificial nephron system.
    Nissenson AR; Ronco C; Pergamit G; Edelstein M; Watts R
    Blood Purif; 2005; 23(4):269-74. PubMed ID: 15908745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimisation of solute transport in dialysers using a three-dimensional finite volume model.
    Eloot S; Vierendeels J; Verdonck P
    Comput Methods Biomech Biomed Engin; 2006 Dec; 9(6):363-70. PubMed ID: 17145670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fractional solute removal and KT/V in different modalities of renal replacement therapy.
    Waniewski J; Lindholm B
    Blood Purif; 2004; 22(4):367-76. PubMed ID: 15297787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of packing density of hollow fibers on solute removal performances of dialyzers.
    Yamashita AC; Fujita R; Tomisawa N; Jinbo Y; Yamamura M
    Hemodial Int; 2009 Oct; 13 Suppl 1():S2-7. PubMed ID: 19775420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Augmenting solute clearance in peritoneal dialysis.
    Krediet RT; Douma CE; van Olden RW; Ho-dac-Pannekeet MM; Struijk DG
    Kidney Int; 1998 Dec; 54(6):2218-25. PubMed ID: 9853288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction in protein-bound solutes unacceptable as marker of dialysis efficacy during alternate-night nocturnal hemodialysis.
    Meijers B; Toussaint ND; Meyer T; Bammens B; Verbeke K; Vanrenterghem Y; Kerr PG; Evenepoel P
    Am J Nephrol; 2011; 34(3):226-32. PubMed ID: 21791919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between effective ionic dialysance and in vivo urea clearance during hemodialysis.
    Lindsay RM; Bene B; Goux N; Heidenheim AP; Landgren C; Sternby J
    Am J Kidney Dis; 2001 Sep; 38(3):565-74. PubMed ID: 11532690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solute-removal enhancement caused by local convective flow in a hemodialyzer.
    Kanamori T; Mizoguchi K
    J Artif Organs; 2012 Sep; 15(3):305-10. PubMed ID: 22476782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying daily hemodialysis.
    Depner TA; Bhat A
    Semin Dial; 2004; 17(2):79-84. PubMed ID: 15043606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of EPO therapy on backfiltration of dialysate in high flux dialysis.
    Robertson BC; Curtin C
    ASAIO Trans; 1990; 36(3):M447-52. PubMed ID: 2252724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Urea kinetics during sustained low-efficiency dialysis in critically ill patients requiring renal replacement therapy.
    Marshall MR; Golper TA; Shaver MJ; Alam MG; Chatoth DK
    Am J Kidney Dis; 2002 Mar; 39(3):556-70. PubMed ID: 11877575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bound solute dialysis.
    Patzer JF; Bane SE
    ASAIO J; 2003; 49(3):271-81. PubMed ID: 12790375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factors influencing low-molecular-weight solute clearance during hemodialysis.
    Huang Z; Clark WR; Gao D
    Hemodial Int; 2005 Oct; 9(4):332-7. PubMed ID: 16219051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of continuous implantable renal replacement: past and future.
    Fissell WH; Fleischman AJ; Humes HD; Roy S
    Transl Res; 2007 Dec; 150(6):327-36. PubMed ID: 18022594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Permselectivity of the glomerular capillary wall to macromolecules. I. Theoretical considerations.
    Chang RS; Robertson CR; Deen WM; Brenner BM
    Biophys J; 1975 Sep; 15(9):861-86. PubMed ID: 1237326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Evolution and physical principles of convection-based dialysis treatment].
    David S
    G Ital Nefrol; 2012; 29 Suppl 55():S3-11. PubMed ID: 22723138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulse push/pull hemodialysis: in vitro study on new dialysis modality with higher convective efficiency.
    Lee K; Lee SR; Mun CH; Min BG
    Artif Organs; 2008 May; 32(5):406-11. PubMed ID: 18471170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.
    Bodin J; Porel G; Delay F; Ubertosi F; Bernard S; de Dreuzy JR
    J Contam Hydrol; 2007 Jan; 89(1-2):1-28. PubMed ID: 16962206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.