These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 16528585)

  • 21. Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions.
    Jones J; Chang NB; Wanielista MP
    Sci Total Environ; 2015 Jan; 502():434-47. PubMed ID: 25278294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E; Cetin S; Yanik BH
    J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents.
    Mittal A; Mittal J; Kurup L; Singh AK
    J Hazard Mater; 2006 Nov; 138(1):95-105. PubMed ID: 16806679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater.
    Wang S; Soudi M; Li L; Zhu ZH
    J Hazard Mater; 2006 May; 133(1-3):243-51. PubMed ID: 16310947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorption of dyes from aqueous solutions onto fly ash.
    Janos P; Buchtová H; Rýznarová M
    Water Res; 2003 Dec; 37(20):4938-44. PubMed ID: 14604640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the removal potential of soil-aquifer treatment system (soil column) for endotoxin.
    Guizani M; Kato H; Funamizu N
    J Environ Monit; 2011 Jun; 13(6):1716-22. PubMed ID: 21566853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of basic dye from aqueous solution onto fly ash.
    Lin JX; Zhan SL; Fang MH; Qian XQ; Yang H
    J Environ Manage; 2008 Apr; 87(1):193-200. PubMed ID: 17307284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash.
    Li Y; Liu C; Luan Z; Peng X; Zhu C; Chen Z; Zhang Z; Fan J; Jia Z
    J Hazard Mater; 2006 Sep; 137(1):374-83. PubMed ID: 16621271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of reactive dyes from aqueous solutions by fly ash: kinetic and equilibrium studies.
    Dizge N; Aydiner C; Demirbas E; Kobya M; Kara S
    J Hazard Mater; 2008 Feb; 150(3):737-46. PubMed ID: 17574338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sorption behavior of potential organic wastewater indicators with soils.
    Yu L; Fink G; Wintgens T; Melin T; Ternes TA
    Water Res; 2009 Mar; 43(4):951-60. PubMed ID: 19095277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a rapid infiltration system for wastewater and river water treatment in Japan using granulated materials.
    Fujikawa Y; Sugahara M; Hamasaki T; Prasai G; Imada R; Arai T; Ozaki H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1355-61. PubMed ID: 16854808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment.
    Gustafsson JP; Renman A; Renman G; Poll K
    Water Res; 2008 Jan; 42(1-2):189-97. PubMed ID: 17659317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal mechanism of phosphate from aqueous solution by fly ash.
    Lu SG; Bai SQ; Zhu L; Shan HD
    J Hazard Mater; 2009 Jan; 161(1):95-101. PubMed ID: 18434007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media.
    Cochrane EL; Lu S; Gibb SW; Villaescusa I
    J Hazard Mater; 2006 Sep; 137(1):198-206. PubMed ID: 16530940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses.
    Miller ML; Bhadha JH; O'Connor GA; Jawitz JW; Mitchell J
    Chemosphere; 2011 May; 83(7):978-83. PubMed ID: 21377185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants.
    Wei X; Viadero RC; Bhojappa S
    Water Res; 2008 Jul; 42(13):3275-84. PubMed ID: 18490048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).
    Jha VK; Matsuda M; Miyake M
    J Hazard Mater; 2008 Dec; 160(1):148-53. PubMed ID: 18417279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term reclaimed water application effects on phosphorus leaching potential in rapid infiltration basins.
    Moura DR; Silveira ML; O'Connor GA; Wise WR
    J Environ Monit; 2011 Sep; 13(9):2457-62. PubMed ID: 21761081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition.
    Chen J; Kong H; Wu D; Chen X; Zhang D; Sun Z
    J Hazard Mater; 2007 Jan; 139(2):293-300. PubMed ID: 16860931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions.
    Sheha RR; El-Zahhar AA
    J Hazard Mater; 2008 Feb; 150(3):795-803. PubMed ID: 17630189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.