BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16529404)

  • 1. Biocompatibility testing of branched and linear polyglycidol.
    Kainthan RK; Janzen J; Levin E; Devine DV; Brooks DE
    Biomacromolecules; 2006 Mar; 7(3):703-9. PubMed ID: 16529404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro biological evaluation of high molecular weight hyperbranched polyglycerols.
    Kainthan RK; Hester SR; Levin E; Devine DV; Brooks DE
    Biomaterials; 2007 Nov; 28(31):4581-90. PubMed ID: 17688941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute.
    Kainthan RK; Janzen J; Kizhakkedathu JN; Devine DV; Brooks DE
    Biomaterials; 2008 Apr; 29(11):1693-704. PubMed ID: 18194812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution.
    Imran ul-haq M; Lai BF; Chapanian R; Kizhakkedathu JN
    Biomaterials; 2012 Dec; 33(35):9135-47. PubMed ID: 23020861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amylose selectively includes one from a mixture of two resemblant polyethers in vine-twining polymerization.
    Kaneko Y; Beppu K; Kadokawa J
    Biomacromolecules; 2007 Oct; 8(10):2983-5. PubMed ID: 17880135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA.
    Kainthan RK; Gnanamani M; Ganguli M; Ghosh T; Brooks DE; Maiti S; Kizhakkedathu JN
    Biomaterials; 2006 Nov; 27(31):5377-90. PubMed ID: 16854460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers.
    Cohn D; Lando G; Sosnik A; Garty S; Levi A
    Biomaterials; 2006 Mar; 27(9):1718-27. PubMed ID: 16310849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophilic polymers--biocompatibility testing in vitro.
    Kejlová K; Labský J; Jírová D; Bendová H
    Toxicol In Vitro; 2005 Oct; 19(7):957-62. PubMed ID: 16081240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: biodistribution studies.
    Kainthan RK; Brooks DE
    Bioconjug Chem; 2008 Nov; 19(11):2231-8. PubMed ID: 18847230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological characterization of Sorona polymer from corn-derived 1,3-propanediol.
    Bhatia SK; Kurian JV
    Biotechnol Lett; 2008 Apr; 30(4):619-23. PubMed ID: 18040602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid polyglycerols with long blood circulation: synthesis, biocompatibility, and biodistribution.
    Imran ul-haq M; Lai BF; Kizhakkedathu JN
    Macromol Biosci; 2014 Oct; 14(10):1469-82. PubMed ID: 25045070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications.
    Wilms D; Stiriba SE; Frey H
    Acc Chem Res; 2010 Jan; 43(1):129-41. PubMed ID: 19785402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators.
    Rossi NA; Mustafa I; Jackson JK; Burt HM; Horte SA; Scott MD; Kizhakkedathu JN
    Biomaterials; 2009 Feb; 30(4):638-48. PubMed ID: 18977029
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Pagnacco CA; Kravicz MH; Sica FS; Fontanini V; González de San Román E; Lund R; Re F; Barroso-Bujans F
    Biomacromolecules; 2024 Jun; 25(6):3583-3595. PubMed ID: 38703359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled branching of polyglycidol and formation of protein-glycidol bioconjugates via a graft-from approach with "PEG-like" arms.
    Spears BR; Waksal J; McQuade C; Lanier L; Harth E
    Chem Commun (Camb); 2013 Mar; 49(24):2394-6. PubMed ID: 23370543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branched multifunctional polyether polyketals: variation of ketal group structure enables unprecedented control over polymer degradation in solution and within cells.
    Shenoi RA; Narayanannair JK; Hamilton JL; Lai BF; Horte S; Kainthan RK; Varghese JP; Rajeev KG; Manoharan M; Kizhakkedathu JN
    J Am Chem Soc; 2012 Sep; 134(36):14945-57. PubMed ID: 22906064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxicity, haematotoxicity and genotoxicity of high molecular mass arborescent polyoxyethylene polymers with polyglycidol-block-containing shells.
    Klajnert B; Walach W; Bryszewska M; Dworak A; Shcharbin D
    Cell Biol Int; 2006 Mar; 30(3):248-52. PubMed ID: 16378736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic in vitro hemocompatibility testing of poly(ether imide) membranes functionalized with linear, methylated oligoglycerol and oligo(ethylene glycol).
    Braune S; von Ruesten-Lange M; Mrowietz C; Lützow K; Roch T; Neffe AT; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2013 Jan; 54(3):235-48. PubMed ID: 23603330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo evaluation of hydrophilic dendronized linear polymers.
    Lee CC; Yoshida M; Fréchet JM; Dy EE; Szoka FC
    Bioconjug Chem; 2005; 16(3):535-41. PubMed ID: 15898719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive block copolymers of poly(ethylene glycol) and polyphosphoester: thermo-induced self-assembly, biocompatibility, and hydrolytic degradation.
    Wang YC; Tang LY; Li Y; Wang J
    Biomacromolecules; 2009 Jan; 10(1):66-73. PubMed ID: 19133835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.