These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 16529411)

  • 21. Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly(sodium styrene sulfonate) (polyNaSS): correlation with physicochemical parameters of proteins.
    Lessim S; Oughlis S; Lataillade JJ; Migonney V; Changotade S; Lutomski D; Poirier F
    Biomed Mater; 2015 Dec; 10(6):065021. PubMed ID: 26658022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphology and adhesion of human fibroblast cells cultured on bioactive polymer grafted ligament prosthesis.
    Zhou J; Ciobanu M; Pavon-Djavid G; Gueguen V; Migonney V
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5115-8. PubMed ID: 18003157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PolyNaSS bioactivation of LARS artificial ligament promotes human ligament fibroblast colonisation in vitro.
    Lessim S; Migonney V; Thoreux P; Lutomski D; Changotade S
    Biomed Mater Eng; 2013; 23(4):289-97. PubMed ID: 23798650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immobilization of galactose ligands on acrylic acid graft-copolymerized poly(ethylene terephthalate) film and its application to hepatocyte culture.
    Ying L; Yin C; Zhuo RX; Leong KW; Mao HQ; Kang ET; Neoh KG
    Biomacromolecules; 2003; 4(1):157-65. PubMed ID: 12523861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions.
    Cai X; Yuan J; Chen S; Li P; Li L; Shen J
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():42-8. PubMed ID: 24433885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterionic cysteine.
    Li P; Cai X; Wang D; Chen S; Yuan J; Li L; Shen J
    Colloids Surf B Biointerfaces; 2013 Oct; 110():327-32. PubMed ID: 23735748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of poly(ethylene terephthalate) by plasma polymerization of poly(ethylene glycol).
    Sakthi Kumar D; Fujioka M; Asano K; Shoji A; Jayakrishnan A; Yoshida Y
    J Mater Sci Mater Med; 2007 Sep; 18(9):1831-5. PubMed ID: 17483899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Grafting of bioactive polymers onto titanium surfaces and human osteoblasts response.
    Mayingi J; Hélary G; Noirclere F; Bacroix B; Migonney V
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5119-22. PubMed ID: 18003158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved blood compatibility of poly(ethylene terephthalate) films modified with L-arginine.
    Liu Y; Chen JR; Yang Y; Wu F
    J Biomater Sci Polym Ed; 2008; 19(4):497-507. PubMed ID: 18318961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blood compatibility of surface modified poly(ethylene terephthalate) (PET) by plasma polymerized acetobromo-alpha-D-glucose.
    Kumar DS; Nair BG; Varghese SH; Nair R; Hanajiri T; Maekawa T; Yoshida Y; John RK; Jayakrishnan A
    J Biomater Appl; 2010 Feb; 24(6):527-44. PubMed ID: 19204061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface modification on polyethylene terephthalate films with 2-methacryloyloxyethyl phosphorylcholine.
    Zheng Z; Ren L; Zhai Z; Wang Y; Hang F
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):3041-6. PubMed ID: 23623130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative investigation of the photodegradation of polyethylene terephthalate film by friction force microscopy, contact-angle goniometry, and X-ray photoelectron spectroscopy.
    Hurley CR; Leggett GJ
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1688-97. PubMed ID: 20355784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell attachment to PET films coated with a thermo-sensitive block co-polymer with different chemical composition.
    Takamoto T; Yasuda K; Tsujino T; Sugihara S; Kanaoka S; Aoshima S; Tabata Y
    J Biomater Sci Polym Ed; 2007; 18(9):1211-22. PubMed ID: 17931509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyethylene terephthalate membrane grafted with peptidomimetics: endothelial cell compatibility and retention under shear stress.
    Rémy M; Bareille R; Rerat V; Bourget C; Marchand-Brynaert J; Bordenave L
    J Biomater Sci Polym Ed; 2013; 24(3):269-86. PubMed ID: 23565647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increase in cell adhesiveness on a poly(ethylene terephthalate) fabric by sintered hydroxyapatite nanocrystal coating in the development of an artificial blood vessel.
    Furuzono T; Masuda M; Okada M; Yasuda S; Kadono H; Tanaka R; Miyatake K
    ASAIO J; 2006; 52(3):315-20. PubMed ID: 16760722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excimer laser chemical ammonia patterning on PET film.
    Wu G; Paz MD; Chiussi S; Serra J; González P; Wang YJ; Leon B
    J Mater Sci Mater Med; 2009 Feb; 20(2):597-606. PubMed ID: 18853239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of primary amine groups available for subsequent biofunctionalization of polymer surfaces.
    Noel S; Liberelle B; Robitaille L; De Crescenzo G
    Bioconjug Chem; 2011 Aug; 22(8):1690-9. PubMed ID: 21736371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of albumin, collagen, and fibronectin on the surface of poly(hydroxybutyrate-hydroxyvalerate) (PHB/HV) and of poly (epsilon-caprolactone) (PCL) films modified by an alkaline hydrolysis and of poly(ethylene terephtalate) (PET) track-etched membranes.
    Rouxhet L; Duhoux F; Borecky O; Legras R; Schneider YJ
    J Biomater Sci Polym Ed; 1998; 9(12):1279-304. PubMed ID: 9860170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.
    Felgueiras HP; Aissa IB; Evans MD; Migonney V
    J Mater Sci Mater Med; 2015 Nov; 26(11):261. PubMed ID: 26449451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation.
    Ko YG; Kim YH; Park KD; Lee HJ; Lee WK; Park HD; Kim SH; Lee GS; Ahn DJ
    Biomaterials; 2001 Aug; 22(15):2115-23. PubMed ID: 11432591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.