These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 1652959)
1. Monitoring of enzymatic activity in situ by EPR. Khramtsov VV; Gorunova TE; Weiner LM Biochem Biophys Res Commun; 1991 Aug; 179(1):520-7. PubMed ID: 1652959 [TBL] [Abstract][Full Text] [Related]
2. [Quantitative determination and reversible modification of sulfhydryl groups in low and high molecular weight compounds using a biradical spin marker]. Khramtsov VV; Elinova VI; Goriunova TE; Vaĭner LM Biokhimiia; 1991 Sep; 56(9):1567-77. PubMed ID: 1660730 [TBL] [Abstract][Full Text] [Related]
3. Quantitative determination of thiol groups in low and high molecular weight compounds by electron paramagnetic resonance. Weiner LM Methods Enzymol; 1995; 251():87-105. PubMed ID: 7651235 [No Abstract] [Full Text] [Related]
4. Quantitative determination of SH groups in low- and high-molecular-weight compounds by an electron spin resonance method. Khramtsov VV; Yelinova VI; Weiner LM; Berezina TA; Martin VV; Volodarsky LB Anal Biochem; 1989 Oct; 182(1):58-63. PubMed ID: 2557778 [TBL] [Abstract][Full Text] [Related]
5. EPR method for the measurement of cellular sulfhydryl groups. Weiner LM; Hu H; Swartz HM FEBS Lett; 1991 Sep; 290(1-2):243-6. PubMed ID: 1655534 [TBL] [Abstract][Full Text] [Related]
6. Paper-based amperometric sensor for determination of acetylcholinesterase using screen-printed graphene electrode. Panraksa Y; Siangproh W; Khampieng T; Chailapakul O; Apilux A Talanta; 2018 Feb; 178():1017-1023. PubMed ID: 29136790 [TBL] [Abstract][Full Text] [Related]
7. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102. Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118 [TBL] [Abstract][Full Text] [Related]
8. Cholinesterase in the larvae of Prodenia litura Fabricius. Mehrotra KN; Chandra D Indian J Exp Biol; 1974 Sep; 12(5):457-8. PubMed ID: 4448502 [No Abstract] [Full Text] [Related]
9. Application of a thiol-specific electrocatalytic electrode for real-time amperometric monitoring of enzymatic hydrolysis. Mukherjee J; Lumibao CY; Kirchhoff JR Analyst; 2009 Mar; 134(3):582-6. PubMed ID: 19238297 [TBL] [Abstract][Full Text] [Related]
10. A colorimetric assay for acetylcholinesterase activity and inhibitor screening based on the thiocholine-induced inhibition of the oxidative power of MnO Sun Y; Tan H; Li Y Mikrochim Acta; 2018 Sep; 185(10):446. PubMed ID: 30187211 [TBL] [Abstract][Full Text] [Related]
11. Thiocholine mediated stabilization of in situ produced CdS quantum dots: application for the detection of acetylcholinesterase activity and inhibitors. Garai-Ibabe G; Saa L; Pavlov V Analyst; 2014 Jan; 139(1):280-4. PubMed ID: 24225492 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo measurement of pH and thiols by EPR-based techniques. Khramtsov VV; Grigor'ev IA; Foster MA; Lurie DJ Antioxid Redox Signal; 2004 Jun; 6(3):667-76. PubMed ID: 15130294 [TBL] [Abstract][Full Text] [Related]
13. Determination of rate constants of the reactions of thiols with superoxide radical by electron paramagnetic resonance: critical remarks on spectrophotometric approaches. Dikalov S; Khramtsov V; Zimmer G Arch Biochem Biophys; 1996 Feb; 326(2):207-18. PubMed ID: 8611025 [TBL] [Abstract][Full Text] [Related]
14. Importance of volume limitation for tissue redox status measurements using nitroxyl contrast agents: a comparison of X-band EPR bile flow monitoring (BFM) method and 300 MHz in vivo EPR measurement. Ui I; Okajo A; Endo K; Utsumi H; Matsumoto K J Magn Reson; 2006 Jul; 181(1):107-12. PubMed ID: 16632393 [TBL] [Abstract][Full Text] [Related]
15. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors. Saa L; Grinyte R; Sánchez-Iglesias A; Liz-Marzán LM; Pavlov V ACS Appl Mater Interfaces; 2016 May; 8(17):11139-46. PubMed ID: 27070402 [TBL] [Abstract][Full Text] [Related]
16. Conformational heterogeneity and spin-labeled -SH groups: pulsed EPR of Na,K-ATPase. Guzzi R; Bartucci R; Sportelli L; Esmann M; Marsh D Biochemistry; 2009 Sep; 48(35):8343-54. PubMed ID: 19642639 [TBL] [Abstract][Full Text] [Related]
17. Screening of acetylcholinesterase inhibitors by CE after enzymatic reaction at capillary inlet. Martín-Biosca Y; Asensi-Bernardi L; Villanueva-Camañas RM; Sagrado S; Medina-Hernández MJ J Sep Sci; 2009 May; 32(10):1748-56. PubMed ID: 19472276 [TBL] [Abstract][Full Text] [Related]
18. Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action. Möbius K; Savitsky A; Wegener C; Plato M; Fuchs M; Schnegg A; Dubinskii AA; Grishin YA; Grigor'ev IA; Kühn M; Duché D; Zimmermann H; Steinhoff HJ Magn Reson Chem; 2005 Nov; 43 Spec no.():S4-S19. PubMed ID: 16235212 [TBL] [Abstract][Full Text] [Related]
19. A sensitive enzymatic method for paraoxon detection based on enzyme inhibition and fluorescence quenching. Wang K; Wang L; Jiang W; Hu J Talanta; 2011 Apr; 84(2):400-5. PubMed ID: 21376964 [TBL] [Abstract][Full Text] [Related]
20. Site-directed electrostatic measurements with a thiol-specific ph-sensitive nitroxide: differentiating local pK and polarity effects by high-field EPR. Smirnov AI; Ruuge A; Reznikov VA; Voinov MA; Grigor'ev IA J Am Chem Soc; 2004 Jul; 126(29):8872-3. PubMed ID: 15264799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]