These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 16529747)
1. Role of the carboxyl terminal stop transfer sequence of UGT1A6 membrane protein in ER targeting and translocation of upstream lumenal domain. Ouzzine M; Barré L; Netter P; Magdalou J; Fournel-Gigleux S FEBS Lett; 2006 Apr; 580(8):1953-8. PubMed ID: 16529747 [TBL] [Abstract][Full Text] [Related]
2. The stop transfer sequence of the human UDP-glucuronosyltransferase 1A determines localization to the endoplasmic reticulum by both static retention and retrieval mechanisms. Barré L; Magdalou J; Netter P; Fournel-Gigleux S; Ouzzine M FEBS J; 2005 Feb; 272(4):1063-71. PubMed ID: 15691338 [TBL] [Abstract][Full Text] [Related]
3. An internal signal sequence mediates the targeting and retention of the human UDP-glucuronosyltransferase 1A6 to the endoplasmic reticulum. Ouzzine M; Magdalou J; Burchell B; Fournel-Gigleux S J Biol Chem; 1999 Oct; 274(44):31401-9. PubMed ID: 10531341 [TBL] [Abstract][Full Text] [Related]
4. A eukaryotic carboxyl-terminal signal sequence translocating large hydrophilic domains across membranes. Zhong X; Malhotra R; Guidotti G FEBS Lett; 2005 Oct; 579(25):5643-50. PubMed ID: 16214140 [TBL] [Abstract][Full Text] [Related]
5. Competition between neighboring topogenic signals during membrane protein insertion into the ER. Monné M; Hessa T; Thissen L; von Heijne G FEBS J; 2005 Jan; 272(1):28-36. PubMed ID: 15634329 [TBL] [Abstract][Full Text] [Related]
6. Topology and endoplasmic reticulum retention signals of the lysosomal storage disease-related membrane protein CLN6. Heine C; Quitsch A; Storch S; Martin Y; Lonka L; Lehesjoki AE; Mole SE; Braulke T Mol Membr Biol; 2007; 24(1):74-87. PubMed ID: 17453415 [TBL] [Abstract][Full Text] [Related]
7. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: the central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism. Beaudoin F; Napier JA Planta; 2002 Jun; 215(2):293-303. PubMed ID: 12029479 [TBL] [Abstract][Full Text] [Related]
8. The signal-anchor domain of adenovirus E3-6.7K, a type III integral membrane protein, can direct adenovirus E3-gp19K, a type I integral membrane protein, into the membrane of the endoplasmic reticulum. Wilson-Rawls J; Deutscher SL; Wold WS Virology; 1994 May; 201(1):66-76. PubMed ID: 8178490 [TBL] [Abstract][Full Text] [Related]
9. Targeting and membrane insertion into the endoplasmic reticulum membrane of Saccharomyces cerevisiae essential protein Rot1. Juanes MA; Martínez-Garay CA; Igual JC; Bañó MC FEMS Yeast Res; 2010 Sep; 10(6):639-47. PubMed ID: 20608986 [TBL] [Abstract][Full Text] [Related]
10. Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Tonkin CJ; Struck NS; Mullin KA; Stimmler LM; McFadden GI Mol Microbiol; 2006 Aug; 61(3):614-30. PubMed ID: 16787449 [TBL] [Abstract][Full Text] [Related]
11. (Arg)3 within the N-terminal domain of glucosidase I contains ER targeting information but is not required absolutely for ER localization. Hardt B; Kalz-Fuller B; Aparicio R; Volker C; Bause E Glycobiology; 2003 Mar; 13(3):159-68. PubMed ID: 12626409 [TBL] [Abstract][Full Text] [Related]
12. Determinants of UDP glucuronosyltransferase membrane association and residency in the endoplasmic reticulum. Meech R; Mackenzie PI Arch Biochem Biophys; 1998 Aug; 356(1):77-85. PubMed ID: 9681994 [TBL] [Abstract][Full Text] [Related]
13. Topogenesis of membrane proteins at the endoplasmic reticulum. Higy M; Junne T; Spiess M Biochemistry; 2004 Oct; 43(40):12716-22. PubMed ID: 15461443 [TBL] [Abstract][Full Text] [Related]
14. Internally located signal peptides direct hepatitis C virus polyprotein processing in the ER membrane. Wu JZ IUBMB Life; 2001 Jan; 51(1):19-23. PubMed ID: 11419691 [TBL] [Abstract][Full Text] [Related]
15. The role of the hydrophobic domain in orienting natural signal sequences within the ER membrane. Eusebio A; Friedberg T; Spiess M Exp Cell Res; 1998 May; 241(1):181-5. PubMed ID: 9633526 [TBL] [Abstract][Full Text] [Related]
16. The hydrophobic domains in the carboxyl-terminal signal for GPI modification and in the amino-terminal leader peptide have similar structural requirements. Yan W; Shen F; Dillon B; Ratnam M J Mol Biol; 1998 Jan; 275(1):25-33. PubMed ID: 9451436 [TBL] [Abstract][Full Text] [Related]
17. Intramembrane proteolysis and endoplasmic reticulum retention of hepatitis C virus core protein. Okamoto K; Moriishi K; Miyamura T; Matsuura Y J Virol; 2004 Jun; 78(12):6370-80. PubMed ID: 15163730 [TBL] [Abstract][Full Text] [Related]
18. A novel serine/proline-rich domain in combination with a transmembrane domain is required for the insertion of AtTic40 into the inner envelope membrane of chloroplasts. Tripp J; Inoue K; Keegstra K; Froehlich JE Plant J; 2007 Dec; 52(5):824-38. PubMed ID: 17883373 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning of a novel ubiquitin-like protein, UBIN, that binds to ER targeting signal sequences. Matsuda M; Koide T; Yorihuzi T; Hosokawa N; Nagata K Biochem Biophys Res Commun; 2001 Jan; 280(2):535-40. PubMed ID: 11162551 [TBL] [Abstract][Full Text] [Related]
20. Targeting of OSBP-related protein 3 (ORP3) to endoplasmic reticulum and plasma membrane is controlled by multiple determinants. Lehto M; Hynynen R; Karjalainen K; Kuismanen E; Hyvärinen K; Olkkonen VM Exp Cell Res; 2005 Nov; 310(2):445-62. PubMed ID: 16143324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]