These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16529777)

  • 1. The type-reproduction number T in models for infectious disease control.
    Heesterbeek JA; Roberts MG
    Math Biosci; 2007 Mar; 206(1):3-10. PubMed ID: 16529777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model.
    Inaba H; Nishiura H
    Math Biosci; 2008 Nov; 216(1):77-89. PubMed ID: 18768142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations.
    Colizza V; Vespignani A
    J Theor Biol; 2008 Apr; 251(3):450-67. PubMed ID: 18222487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saturation recovery leads to multiple endemic equilibria and backward bifurcation.
    Cui J; Mu X; Wan H
    J Theor Biol; 2008 Sep; 254(2):275-83. PubMed ID: 18586277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Mathematical model of Schistosoma mansoni in Biomphalaria glabrata with control strategies.
    Zhao R; Milner FA
    Bull Math Biol; 2008 Oct; 70(7):1886-905. PubMed ID: 18668296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The control of vector-borne disease epidemics.
    Hosack GR; Rossignol PA; van den Driessche P
    J Theor Biol; 2008 Nov; 255(1):16-25. PubMed ID: 18706917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks.
    Yan P
    J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness.
    Yan P; Feng Z
    Math Biosci; 2010 Mar; 224(1):43-52. PubMed ID: 20043927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.
    Tanner MW; Sattenspiel L; Ntaimo L
    Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical study on mathematical modelling of an infectious disease with application of optimal control.
    Kar TK; Jana S
    Biosystems; 2013 Jan; 111(1):37-50. PubMed ID: 23127788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVIR epidemic models with vaccination strategies.
    Liu X; Takeuchi Y; Iwami S
    J Theor Biol; 2008 Jul; 253(1):1-11. PubMed ID: 18023819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The abundance threshold for plague as a critical percolation phenomenon.
    Davis S; Trapman P; Leirs H; Begon M; Heesterbeek JA
    Nature; 2008 Jul; 454(7204):634-7. PubMed ID: 18668107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A useful relationship between epidemiology and queueing theory: the distribution of the number of infectives at the moment of the first detection.
    Trapman P; Bootsma MC
    Math Biosci; 2009 May; 219(1):15-22. PubMed ID: 19233215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The basic reproduction number for complex disease systems: defining R(0) for tick-borne infections.
    Hartemink NA; Randolph SE; Davis SA; Heesterbeek JA
    Am Nat; 2008 Jun; 171(6):743-54. PubMed ID: 18462128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal harvesting and optimal vaccination.
    Hadeler KP; Müller J
    Math Biosci; 2007 Apr; 206(2):249-72. PubMed ID: 16289580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemic models with heterogeneous mixing and treatment.
    Brauer F
    Bull Math Biol; 2008 Oct; 70(7):1869-85. PubMed ID: 18663538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network epidemic models with two levels of mixing.
    Ball F; Neal P
    Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Threshold parameters for a model of epidemic spread among households and workplaces.
    Pellis L; Ferguson NM; Fraser C
    J R Soc Interface; 2009 Nov; 6(40):979-87. PubMed ID: 19324683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration.
    Jesse M; Ezanno P; Davis S; Heesterbeek JA
    J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.