BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16529810)

  • 1. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates.
    Kavimandan NJ; Losi E; Peppas NA
    Biomaterials; 2006 Jul; 27(20):3846-54. PubMed ID: 16529810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids.
    Perakslis E; Tuesca A; Lowman A
    J Biomater Sci Polym Ed; 2007; 18(12):1475-90. PubMed ID: 17988515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loading and mobility of spin-labeled insulin in physiologically responsive complexation hydrogels intended for oral administration.
    Besheer A; Wood KM; Peppas NA; Mäder K
    J Control Release; 2006 Mar; 111(1-2):73-80. PubMed ID: 16460830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular evaluation of synthesized insulin/transferrin bioconjugates for oral insulin delivery using intelligent complexation hydrogels.
    Shofner JP; Phillips MA; Peppas NA
    Macromol Biosci; 2010 Mar; 10(3):299-306. PubMed ID: 20034125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin.
    Sajeesh S; Bouchemal K; Marsaud V; Vauthier C; Sharma CP
    J Control Release; 2010 Nov; 147(3):377-84. PubMed ID: 20727924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starch-based polymeric carriers for oral-insulin delivery.
    Mahkam M
    J Biomed Mater Res A; 2010 Mar; 92(4):1392-7. PubMed ID: 19353572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of monomeric and oligomeric transferrin as potential carrier in oral delivery of protein drugs.
    Lim CJ; Shen WC
    J Control Release; 2005 Sep; 106(3):273-86. PubMed ID: 15964654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.
    Nakamura K; Murray RJ; Joseph JI; Peppas NA; Morishita M; Lowman AM
    J Control Release; 2004 Mar; 95(3):589-99. PubMed ID: 15023469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.
    Sajeesh S; Vauthier C; Gueutin C; Ponchel G; Sharma CP
    Acta Biomater; 2010 Aug; 6(8):3072-80. PubMed ID: 20144748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lectin functionalized complexation hydrogels for oral protein delivery.
    Wood KM; Stone G; Peppas NA
    J Control Release; 2006 Nov; 116(2):e66-8. PubMed ID: 17718976
    [No Abstract]   [Full Text] [Related]  

  • 11. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of insulin-transferrin conjugates.
    Kavimandan NJ; Losi E; Wilson JJ; Brodbelt JS; Peppas NA
    Bioconjug Chem; 2006; 17(6):1376-84. PubMed ID: 17105214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexation hydrogels for oral insulin delivery: effects of polymer dosing on in vivo efficacy.
    Tuesca A; Nakamura K; Morishita M; Joseph J; Peppas N; Lowman A
    J Pharm Sci; 2008 Jul; 97(7):2607-18. PubMed ID: 17876768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular evaluation of oral chemotherapy carriers.
    Blanchette J; Peppas NA
    J Biomed Mater Res A; 2005 Mar; 72(4):381-8. PubMed ID: 15666363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption.
    Morishita M; Goto T; Peppas NA; Joseph JI; Torjman MC; Munsick C; Nakamura K; Yamagata T; Takayama K; Lowman AM
    J Control Release; 2004 May; 97(1):115-24. PubMed ID: 15147809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites.
    Park H; Temenoff JS; Tabata Y; Caplan AI; Raphael RM; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Mar; 88(4):889-97. PubMed ID: 18381637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles.
    Peppas NA; Kavimandan NJ
    Eur J Pharm Sci; 2006 Nov; 29(3-4):183-97. PubMed ID: 16777391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogels used for cell-based drug delivery.
    Schmidt JJ; Rowley J; Kong HJ
    J Biomed Mater Res A; 2008 Dec; 87(4):1113-22. PubMed ID: 18837425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal carrier integrating biomaterials for oral insulin delivery: Influence of component formulation on physicochemical and biological parameters.
    Woitiski CB; Neufeld RJ; Ribeiro AJ; Veiga F
    Acta Biomater; 2009 Sep; 5(7):2475-84. PubMed ID: 19362890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles.
    Cui F; Qian F; Zhao Z; Yin L; Tang C; Yin C
    Biomacromolecules; 2009 May; 10(5):1253-8. PubMed ID: 19292439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.