These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16529810)

  • 1. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates.
    Kavimandan NJ; Losi E; Peppas NA
    Biomaterials; 2006 Jul; 27(20):3846-54. PubMed ID: 16529810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids.
    Perakslis E; Tuesca A; Lowman A
    J Biomater Sci Polym Ed; 2007; 18(12):1475-90. PubMed ID: 17988515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loading and mobility of spin-labeled insulin in physiologically responsive complexation hydrogels intended for oral administration.
    Besheer A; Wood KM; Peppas NA; Mäder K
    J Control Release; 2006 Mar; 111(1-2):73-80. PubMed ID: 16460830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular evaluation of synthesized insulin/transferrin bioconjugates for oral insulin delivery using intelligent complexation hydrogels.
    Shofner JP; Phillips MA; Peppas NA
    Macromol Biosci; 2010 Mar; 10(3):299-306. PubMed ID: 20034125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin.
    Sajeesh S; Bouchemal K; Marsaud V; Vauthier C; Sharma CP
    J Control Release; 2010 Nov; 147(3):377-84. PubMed ID: 20727924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starch-based polymeric carriers for oral-insulin delivery.
    Mahkam M
    J Biomed Mater Res A; 2010 Mar; 92(4):1392-7. PubMed ID: 19353572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of monomeric and oligomeric transferrin as potential carrier in oral delivery of protein drugs.
    Lim CJ; Shen WC
    J Control Release; 2005 Sep; 106(3):273-86. PubMed ID: 15964654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.
    Nakamura K; Murray RJ; Joseph JI; Peppas NA; Morishita M; Lowman AM
    J Control Release; 2004 Mar; 95(3):589-99. PubMed ID: 15023469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.
    Sajeesh S; Vauthier C; Gueutin C; Ponchel G; Sharma CP
    Acta Biomater; 2010 Aug; 6(8):3072-80. PubMed ID: 20144748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lectin functionalized complexation hydrogels for oral protein delivery.
    Wood KM; Stone G; Peppas NA
    J Control Release; 2006 Nov; 116(2):e66-8. PubMed ID: 17718976
    [No Abstract]   [Full Text] [Related]  

  • 11. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of insulin-transferrin conjugates.
    Kavimandan NJ; Losi E; Wilson JJ; Brodbelt JS; Peppas NA
    Bioconjug Chem; 2006; 17(6):1376-84. PubMed ID: 17105214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexation hydrogels for oral insulin delivery: effects of polymer dosing on in vivo efficacy.
    Tuesca A; Nakamura K; Morishita M; Joseph J; Peppas N; Lowman A
    J Pharm Sci; 2008 Jul; 97(7):2607-18. PubMed ID: 17876768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular evaluation of oral chemotherapy carriers.
    Blanchette J; Peppas NA
    J Biomed Mater Res A; 2005 Mar; 72(4):381-8. PubMed ID: 15666363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption.
    Morishita M; Goto T; Peppas NA; Joseph JI; Torjman MC; Munsick C; Nakamura K; Yamagata T; Takayama K; Lowman AM
    J Control Release; 2004 May; 97(1):115-24. PubMed ID: 15147809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites.
    Park H; Temenoff JS; Tabata Y; Caplan AI; Raphael RM; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Mar; 88(4):889-97. PubMed ID: 18381637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles.
    Peppas NA; Kavimandan NJ
    Eur J Pharm Sci; 2006 Nov; 29(3-4):183-97. PubMed ID: 16777391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogels used for cell-based drug delivery.
    Schmidt JJ; Rowley J; Kong HJ
    J Biomed Mater Res A; 2008 Dec; 87(4):1113-22. PubMed ID: 18837425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal carrier integrating biomaterials for oral insulin delivery: Influence of component formulation on physicochemical and biological parameters.
    Woitiski CB; Neufeld RJ; Ribeiro AJ; Veiga F
    Acta Biomater; 2009 Sep; 5(7):2475-84. PubMed ID: 19362890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles.
    Cui F; Qian F; Zhao Z; Yin L; Tang C; Yin C
    Biomacromolecules; 2009 May; 10(5):1253-8. PubMed ID: 19292439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.