These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 16530218)

  • 41. Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins.
    Tabashnik BE; Malvar T; Liu YB; Finson N; Borthakur D; Shin BS; Park SH; Masson L; de Maagd RA; Bosch D
    Appl Environ Microbiol; 1996 Aug; 62(8):2839-44. PubMed ID: 8702276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins.
    Bird LJ; Akhurst RJ
    J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of cDNAs encoding three trypsin-like proteinases and mRNA quantitative analysis in Bt-resistant and -susceptible strains of Ostrinia nubilalis.
    Li H; Oppert B; Higgins RA; Huang F; Buschman LL; Gao JR; Zhu KY
    Insect Biochem Mol Biol; 2005 Aug; 35(8):847-60. PubMed ID: 15944081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Binding analysis of Bacillus thuringiensis Cry1 proteins in the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae).
    Davolos CC; Hernández-Martinez P; Crialesi-Legori PC; Desidério JA; Ferré J; Escriche B; Lemos MV
    J Invertebr Pathol; 2015 May; 127():32-4. PubMed ID: 25736726
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton.
    Liao C; Heckel DG; Akhurst R
    J Invertebr Pathol; 2002 May; 80(1):55-63. PubMed ID: 12234543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The clonal structure of Bacillus thuringiensis isolates from north-east Poland does not correlate with their cry gene diversity.
    Swiecicka I; Mahillon J
    Environ Microbiol; 2005 Jan; 7(1):34-9. PubMed ID: 15643933
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Co-expression of Bacillus thuringiensis Cry4Ba and Cyt2Aa2 in Escherichia coli revealed high synergism against Aedes aegypti and Culex quinquefasciatus larvae.
    Promdonkoy B; Promdonkoy P; Panyim S
    FEMS Microbiol Lett; 2005 Nov; 252(1):121-6. PubMed ID: 16168580
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved.
    Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP
    J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids.
    de Maagd RA; Weemen-Hendriks M; Stiekema W; Bosch D
    Appl Environ Microbiol; 2000 Apr; 66(4):1559-63. PubMed ID: 10742242
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Importance of Cry1 delta-endotoxin domain II loops for binding specificity in Heliothis virescens (L.).
    Jurat-Fuentes JL; Adang MJ
    Appl Environ Microbiol; 2001 Jan; 67(1):323-9. PubMed ID: 11133462
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pesticidal and receptor binding properties of Bacillus thuringiensis Cry1Ab and Cry1Ac delta-endotoxin mutants to Pectinophora gossypiella and Helicoverpa zea.
    Karim S; Dean DH
    Curr Microbiol; 2000 Dec; 41(6):430-40. PubMed ID: 11080394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A binding site for Bacillus thuringiensis Cry1Ab toxin is lost during larval development in two forest pests.
    Rausell C; Martínez-Ramírez AC; García-Robles I; Real MD
    Appl Environ Microbiol; 2000 Apr; 66(4):1553-8. PubMed ID: 10742241
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae.
    Singh G; Rup PJ; Koul O
    Bull Entomol Res; 2007 Aug; 97(4):351-7. PubMed ID: 17645816
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toxicity of Bacillus thuringiensis crystal proteins against eri silkworm, Samia cynthia ricini (Lepidoptera: Saturniidae).
    Sandeep Kumar D; Tarakeswari M; Lakshminarayana M; Sujatha M
    J Invertebr Pathol; 2016 Jul; 138():116-9. PubMed ID: 27377590
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of Ephestia kuehniella stage larvae on the potency of Bacillus thuringiensis Cry1Aa delta-endotoxin.
    Abdelmalek N; Sellami S; Kallassy-Awad M; Tounsi MF; Mebarkia A; Tounsi S; Rouis S
    Pestic Biochem Physiol; 2017 Apr; 137():91-97. PubMed ID: 28364809
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protozoan-enhanced toxicity of Bacillus thuringiensis var. israelensis delta-endotoxin against Aedes aegypti larvae.
    Manasherob R; Ben-Dov E; Zaritsky A; Barak Z
    J Invertebr Pathol; 1994 May; 63(3):244-8. PubMed ID: 8021522
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Susceptibility of dipel-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to individual Bacillus thuringiensis protoxins.
    Li H; Oppert B; Higgins RA; Huang F; Buschman LL; Zhu KY
    J Econ Entomol; 2005 Aug; 98(4):1333-40. PubMed ID: 16156588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural requirements of the unique disulphide bond and the proline-rich motif within the alpha4-alpha5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa delta-endotoxin.
    Tapaneeyakorn S; Pornwiroon W; Katzenmeier G; Angsuthanasombat C
    Biochem Biophys Res Commun; 2005 May; 330(2):519-25. PubMed ID: 15796913
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacillus thuringiensis and its use in transgenic insect control technologies.
    Van Rie J
    Int J Med Microbiol; 2000 Oct; 290(4-5):463-9. PubMed ID: 11111927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins.
    Jurat-Fuentes JL; Adang MJ
    Biochemistry; 2006 Aug; 45(32):9688-95. PubMed ID: 16893170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.