These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 16530308)

  • 1. Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching.
    Ruttens A; Colpaert JV; Mench M; Boisson J; Carleer R; Vangronsveld J
    Environ Pollut; 2006 Nov; 144(2):533-9. PubMed ID: 16530308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals.
    Ruttens A; Mench M; Colpaert JV; Boisson J; Carleer R; Vangronsveld J
    Environ Pollut; 2006 Nov; 144(2):524-32. PubMed ID: 16542762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal stabilization in contaminated road-derived sediments.
    Rijkenberg MJ; Depree CV
    Sci Total Environ; 2010 Feb; 408(5):1212-20. PubMed ID: 20006898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil.
    Lin D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.
    Pedron F; Petruzzelli G; Barbafieri M; Tassi E
    Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Chemosphere; 2009 Mar; 74(10):1292-300. PubMed ID: 19118864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ.
    Brown S; Christensen B; Lombi E; McLaughlin M; McGrath S; Colpaert J; Vangronsveld J
    Environ Pollut; 2005 Nov; 138(1):34-45. PubMed ID: 15950344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of metal contaminated soil with mineral-amended composts.
    van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK
    Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health.
    Epelde L; Becerril JM; Mijangos I; Garbisu C
    J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process.
    Luo CL; Shen ZG; Li XD
    Int J Phytoremediation; 2007; 9(3):181-96. PubMed ID: 18246767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of the short-term availability of copper, lead and zinc in a contaminated soil amended with municipal solid waste compost.
    Paradelo R; Villada A; Barral MT
    J Hazard Mater; 2011 Apr; 188(1-3):98-104. PubMed ID: 21316851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils.
    Karathanasis AD; Johnson DM; Matocha CJ
    J Environ Qual; 2005; 34(4):1153-64. PubMed ID: 15942034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site.
    Pichtel J; Bradway DJ
    Bioresour Technol; 2008 Mar; 99(5):1242-51. PubMed ID: 17475483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching.
    Udovic M; Lestan D
    Chemosphere; 2009 Mar; 74(10):1367-73. PubMed ID: 19110294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Migration of heavy metals in soil as influenced by compost amendments.
    Farrell M; Perkins WT; Hobbs PJ; Griffith GW; Jones DL
    Environ Pollut; 2010 Jan; 158(1):55-64. PubMed ID: 19773103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of willow for remediation of heavy metal polluted calcareous urban soils.
    Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK
    Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.