BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 16530310)

  • 1. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account.
    Hobbelen PH; Koolhaas JE; Van Gestel CA
    Environ Pollut; 2004 Jun; 129(3):409-19. PubMed ID: 15016462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data.
    Veltman K; Huijbregts MA; Vijver MG; Peijnenburg WJ; Hobbelen PH; Koolhaas JE; van Gestel CA; van Vliet PC; Hendriks AJ
    Environ Pollut; 2007 Mar; 146(2):428-36. PubMed ID: 16938367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient.
    Notten MJ; Oosthoek AJ; Rozema J; Aerts R
    Environ Pollut; 2005 Nov; 138(1):178-90. PubMed ID: 16005127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal concentrations in soil and earthworms in a floodplain grassland.
    van Vliet PC; van der Zee SE; Ma WC
    Environ Pollut; 2005 Dec; 138(3):505-16. PubMed ID: 15951081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal accumulation in earthworms inhabiting floodplain soils.
    Vijver MG; Vink JP; Miermans CJ; van Gestel CA
    Environ Pollut; 2007 Jul; 148(1):132-40. PubMed ID: 17254683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions.
    Lee SH; Kim EY; Hyun S; Kim JG
    J Hazard Mater; 2009 Oct; 170(1):382-8. PubMed ID: 19540045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking biosensor responses to Cd, Cu and Zn partitioning in soils.
    Dawson JJ; Campbell CD; Towers W; Cameron CM; Paton GI
    Environ Pollut; 2006 Aug; 142(3):493-500. PubMed ID: 16325972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils.
    Ernst G; Zimmermann S; Christie P; Frey B
    Environ Pollut; 2008 Dec; 156(3):1304-13. PubMed ID: 18400348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis).
    Teuchies J; de Deckere E; Bervoets L; Meynendonckx J; van Regenmortel S; Blust R; Meire P
    Environ Pollut; 2008 Sep; 155(1):20-30. PubMed ID: 18158203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland).
    Łaszczyca P; Augustyniak M; Babczyńska A; Bednarska K; Kafel A; Migula P; Wilczek G; Witas I
    Environ Int; 2004 Sep; 30(7):901-10. PubMed ID: 15196838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of spatial and temporal variation in metal availability on earthworms in floodplain soils of the river Dommel, The Netherlands.
    Bleeker EA; van Gestel CA
    Environ Pollut; 2007 Aug; 148(3):824-32. PubMed ID: 17376569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of Cd, Zn, Cu and Fe among selected tissues of the earthworm (Allolobophora caliginosa) and Eurasian woodcock (Scolopax rusticola).
    Carpenè E; Andreani G; Monari M; Castellani G; Isani G
    Sci Total Environ; 2006 Jun; 363(1-3):126-35. PubMed ID: 16095669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions.
    Marinussen MP; Van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):17-26. PubMed ID: 9056396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia andrei, Lumbricus rubellus and Lumbricus terrestris.
    Arnold RE; Hodson ME
    Environ Pollut; 2007 Jul; 148(1):21-30. PubMed ID: 17254685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan.
    Kamitani T; Kaneko N
    Ecotoxicol Environ Saf; 2007 Jan; 66(1):82-91. PubMed ID: 16324743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability and cellular effects of metals on Lumbricus terrestris inhabiting volcanic soils.
    Amaral A; Soto M; Cunha R; Marigómez I; Rodrigues A
    Environ Pollut; 2006 Jul; 142(1):103-8. PubMed ID: 16289775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transversal immission patterns and leachability of heavy metals in road side soils.
    Hjortenkrans DS; Bergbäck BG; Häggerud AV
    J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils.
    Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME
    Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.