BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16530313)

  • 21. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil.
    Labud V; Garcia C; Hernandez T
    Chemosphere; 2007 Jan; 66(10):1863-71. PubMed ID: 17083964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity.
    Owsianiak M; Szulc A; Chrzanowski Ł; Cyplik P; Bogacki M; Olejnik-Schmidt AK; Heipieper HJ
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):545-53. PubMed ID: 19471922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues.
    Odlare M; Pell M; Svensson K
    Waste Manag; 2008; 28(7):1246-53. PubMed ID: 17697770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.
    Joo HS; Ndegwa PM; Shoda M; Phae CG
    Environ Pollut; 2008 Dec; 156(3):891-6. PubMed ID: 18620787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil.
    Serrano A; Gallego M; González JL; Tejada M
    Environ Pollut; 2008 Feb; 151(3):494-502. PubMed ID: 17555854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study.
    Hubálek T; Vosáhlová S; Matejů V; Kovácová N; Novotný C
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):1-7. PubMed ID: 17106791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of heavy metals and hydrocarbon contents in an alfisol contaminated with waste-lubricating oil amended with organic wastes.
    Adesodun JK; Mbagwu JS
    Bioresour Technol; 2008 May; 99(8):3195-204. PubMed ID: 17616460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linking chemical extraction to microbial degradation of 14C-hexadecane in soil.
    Stroud JL; Paton GI; Semple KT
    Environ Pollut; 2008 Nov; 156(2):474-81. PubMed ID: 18316143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions.
    Sood N; Lal B
    J Environ Manage; 2009 Apr; 90(5):1728-36. PubMed ID: 19111380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicity of pulp and paper solid organic waste constituents to soil organisms.
    Fraser DS; O'Halloran K; van den Heuvel MR
    Chemosphere; 2009 Feb; 74(5):660-8. PubMed ID: 19121839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of indigenous bacterial and fungal soil populations in the biodegradation of crude oil in a desert soil.
    Embar K; Forgacs C; Sivan A
    Biodegradation; 2006 Aug; 17(4):369-77. PubMed ID: 16570229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils.
    Li YT; Becquer T; Dai J; Quantin C; Benedetti MF
    Environ Pollut; 2009 Apr; 157(4):1249-57. PubMed ID: 19152990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vaerløse, Denmark.
    Kaufmann K; Christophersen M; Buttler A; Harms H; Höhener P
    FEMS Microbiol Ecol; 2004 Jun; 48(3):387-99. PubMed ID: 19712308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acidophilic microbial communities associated with a natural, biodegraded hydrocarbon seepage.
    Röling WF; Ortega-Lucach S; Larter SR; Head IM
    J Appl Microbiol; 2006 Aug; 101(2):290-9. PubMed ID: 16882136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leaching and microbial treatment of a soil contaminated by sulphide ore ashes and aromatic hydrocarbons.
    D'Annibale A; Leonardi V; Federici E; Baldi F; Zecchini F; Petruccioli M
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):1135-44. PubMed ID: 17136366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil.
    de la Fuente C; Clemente R; Bernal MP
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):207-15. PubMed ID: 17659778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of brown coal on limit of phytotoxicity of soils contaminated with heavy metals.
    Pusz A
    J Hazard Mater; 2007 Nov; 149(3):590-7. PubMed ID: 17693020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial competition, lack in macronutrients, and acidity as main obstacles to the transfer of basidiomycetous ground fungi into (organically or heavy-metal contaminated) soils.
    Gramss G; Bergmann H
    J Basic Microbiol; 2007 Aug; 47(4):309-16. PubMed ID: 17647209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils.
    Al-Saleh ES; Obuekwe C
    J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.